切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2024, Vol. 10 ›› Issue (04) : 198 -205. doi: 10.3877/cma.j.issn.2095-9141.2024.04.002

基础研究

大鼠脊髓损伤后降钙素基因相关肽及神经元钙超载的变化及相关性分析
薛文1, 刘卓2, 贾卫华1, 张小义1, 刘进1, 王爱国1, 冯志刚1, 杨鑫1, 田祺1, 段虎斌1,()   
  1. 1.033000 山西吕梁,吕梁市人民医院(山西医科大学附属吕梁医院)神经外科
    2.510000 广州,广东三九脑科医院神经外一科
  • 收稿日期:2024-02-03 出版日期:2024-08-15
  • 通信作者: 段虎斌
  • 基金资助:
    国家自然科学基金(30600637)吕梁市重点研发项目(社会发展)(2019SHFZ63)吕梁市引进高层次科技人才重点研发项目(2023RC08)

Changes and prognosis of calcitonin gene-related peptide and neuronal calcium overload after spinal cord injury in rats

Wen Xue1, Zhuo Liu2, Weihua Jia1, Xiaoyi Zhang1, Jin Liu1, Aiguo Wang1, Zhigang Feng1, Xin Yang1, Qi Tian1, Hubin Duan1,()   

  1. 1.Department of Neurosurgery, Lvliang People’s Hospital (Lvliang Hospital of Shanxi Medical University), Lvliang 033000, China
    2.Department of Neurosurgery,Guangdong Sanjiu Brain Hospital,Guangzhou 510000,China
  • Received:2024-02-03 Published:2024-08-15
  • Corresponding author: Hubin Duan
引用本文:

薛文, 刘卓, 贾卫华, 张小义, 刘进, 王爱国, 冯志刚, 杨鑫, 田祺, 段虎斌. 大鼠脊髓损伤后降钙素基因相关肽及神经元钙超载的变化及相关性分析[J]. 中华神经创伤外科电子杂志, 2024, 10(04): 198-205.

Wen Xue, Zhuo Liu, Weihua Jia, Xiaoyi Zhang, Jin Liu, Aiguo Wang, Zhigang Feng, Xin Yang, Qi Tian, Hubin Duan. Changes and prognosis of calcitonin gene-related peptide and neuronal calcium overload after spinal cord injury in rats[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2024, 10(04): 198-205.

目的

研究脊髓损伤(SCI)后神经元内钙离子(Ca2+)浓度及血浆中降钙素基因相关肽(CGRP)浓度的变化,及其与SCI 严重程度之间的关系。

方法

100 只雄性Wistar 大鼠按照随机数字表法以3∶1分为实验组(75只)和对照组(25只),实验组采用Feeney法按自由落体致伤原理制成不同损伤程度的SCI大鼠病理模型,并按照损伤严重程度分为轻度组(25只)、中度组(25只)和重度组(25只),对照组仅行手术操作,不进行打击损伤。在建模后0.5、6、12、24、48、72 h,每组分别取10只大鼠予以眼内眦取血,采用放射免疫分析法测定血浆中CGRP浓度;并分别于各时间点取3只大鼠(伤后72 h的3只大鼠从眼内眦取血的10只大鼠中随机选取)予以断颈处死,取出脊髓(T9~11),分离神经元并进行纯度检测,通过激光扫描共聚焦荧光显微镜测定神经元内Ca2+浓度。

结果

实验组大鼠的神经元内Ca2+荧光像素值在损伤后持续升高,24 h时达到最高,之后逐渐下降,各时间点的Ca2+荧光像素值均明显高于对照组,且重度组>中度组>轻度组,差异均有统计学意义(P<0.05)。实验组大鼠血浆中CGRP 浓度在损伤后0.5 h 快速上升,显著高于对照组,差异有统计学意义(P<0.05);损伤后6 h开始降低,48 h逐渐升高,且损伤后6、12、24、48 h的血浆中CGRP 浓度均低于对照组,差异有统计学意义(P<0.05)。实验组中,3组大鼠损伤后0.5 h血浆中CGRP 浓度比较,差异无统计学意义(P>0.05);损伤后12、24、48 h 血浆中CGRP 浓度比较,重度组<中度组<轻度组,差异有统计学意义(P<0.05)。相关性分析显示,中度组和重度组的Ca2+浓度和CGRP 浓度呈负相关(中度组:r=-0.513,P<0.001;重度组:r=-0.391,P=0.013)。

结论

SCI早期会出现神经元内钙超载和CGRP 浓度异常,且二者呈负相关,可能与原发损伤信号的传导及继发性级联反应二次损伤密切相关,SCI发生后及早维持神经元内Ca2+浓度和血浆中CGRP浓度的稳态,有利于SCI患者的治疗并改善预后。

Objective

To study the changes in the concentrations of calcium ion (Ca2+)in neurons and calcitonin-gene-related peptide (CGRP) in plasma and their relationship with the severity of spinal cord injury (SCI).

Methods

A total of 100 male Wistar rats were randomly divided into experimental group(75 rats)and control group (25 rats)in a ratio of 3∶1 according to the random number table method.The experimental group was made into pathological models of SCI rats with light, medium and heavy injuries according to the principle of free fall injury by Feeney method, and divided into mild group(25 rats), moderate group (25 rats) and severe group (25 rats) according to the severity of injuries. The control group only underwent surgery, and did not cause SCI. At each time period (0.5, 6, 12, 24, 48 and 72 h) after the establishment of the model, 10 rats in each group were randomly selected to take blood from the eye canthus, and the CGRP concentration in plasma was determined by radioimmunoassay,among which 3 rats were randomly selected (including 3 rats randomly selected from 10 rats with blood taken from the canthus at 72 h after modeling)to be killed by neck-breaking,and the spinal cord (T9-11)was taken out, and the neurons were isolated and the purity was detected, the intracellular Ca2+concentration of neurons was measured by laser scanning confocal microscopy.

Results

The intracellular Ca2+ fluorescence pixel values of the experimental group rats rapidly increased after injury, reaching the highest value at 24 h and gradually decreased thereafter.Ca2+fluorescence pixel values at each time point were significantly higher than those of the control group, with severe groupmoderate groupmild group,and the differences were statistically significant (P<0.05).The concentration of CGRP in the plasma of the experimental group rats rapidly increased at 0.5 h after injury,significantly higher than that of the control group, and the difference was statistically significant (P<0.05); The concentration of CGRP in the plasma began to decrease at 6 h after injury and gradually increased at 48 h, the concentrations of CGRP in the plasma at 6, 12, 24, and 48 h after injury were all lower than those in the control group, and the differences were statistically significant (P<0.05). In the experimental group, there was no statistically significant difference in the concentration of CGRP in the plasma of the three groups of rats at 0.5 h after injury (P0.05); The plasma concentration of CGRP was compared at 12, 24, and 48 h after injury, with the severe grouP<moderate grouP<mild group, and the differences were statistically significant (P<0.05).Correlation analysis showed a negative correlation between Ca2+concentration and CGRP concentration in the moderate and severe groups (moderate group: r=-0.513,P0.001; severe group: r=-0.391, P=0.013).

Conclusion

In the early stage of SCI, there may be intracellular calcium overload and abnormal CGRP concentration in neurons, which are negatively correlated and may be closely related to the transmission of primary injury signals and secondary cascade reactions. Maintaining the steady state of intracellular Ca2+ concentration and CGRP concentration in plasma as soon as possible after SCI is beneficial for the treatment and improvement of prognosis of SCI patients.

图1 脊髓损伤建模装置示意图
Fig.1 Schematic diagram of spinal cord injury modeling device
图2 脊髓神经元荧光鉴定染色图
Fig.2 Fluorescence identification staining of spinal cord neurons
图3 2组大鼠脊髓神经元纯度检验(10×) A:对照组;B:实验组
Fig.3 Purity test of spinal cord neurons in two groups of rats(10×)
图4 各组大鼠脊髓损伤后24 h Ca2+荧光离子成像 A:对照组;B:轻度组;C:中度组;D:重度组
Fig.4 Ca2+fluorescence ion imaging 24 h after spinal cord injury in each group of rats
表1 实验组和对照组大鼠SCI后不同时间的Ca2+荧光像素值比较
Tab.1 Comparison of Ca2+fluorescence pixel values between experimental group and control group at different time
表2 实验组与对照组大鼠SCI后不同时间的CGRP浓度比较(µg/mL)
Tab.2 Comparison of CGRP concentration between experimental group and control group at different time (µg/mL)
[1]
Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury[J].Nat Rev Dis Primers,2017,3:17018.DOI:10.1038/nrdp.2017.18.
[2]
许梦,杨旺,李文志.降钙素基因相关肽在心血管系统中作用的研究进展[J]. 疑难病杂志, 2014, 13(7): 758-760. DOI: 10.3969/j.issn.1671-6450.2014.07.035.Xu M, Yang W, Li WZ. Research progress of calcitonin generelated peptide in cardiovascular system[J]. Chin J Diffic and Compl Cas,2014,13(7):758-760.DOI:10.3969/j.issn.1671-6450.2014.07.035.
[3]
张宇.降钙素基因相关肽在脊髓损伤后引导间充质干细胞归巢机制的研究[D].苏州:苏州大学,2016.Zhang Y. Calcitonin gene-related peptide directs transplanted MSCs homing to sites of spinal cord injury[D]. Suzhou: Soochow University,2016.
[4]
Tian J, Yang L, Wang P, et al. Exogenous CGRP regulates apoptosis and autophagy to alleviate traumatic brain injury through AKT/mTOR signalling pathway[J]. Neurochem Res, 2020,45(12):2926-2938.DOI:10.1007/s11064-020-03141-9.
[5]
Christensen MD, Hulsebosch CE. Spinal cord injury and anti-NGF treatment results in changes in CGRP density and distribution in the dorsal horn in the rat[J].Exp Neurol,1997,147(2):463-475.DOI:10.1006/exnr.1997.6608.
[6]
Sang X, Wang Z, Shi P, et al. CGRP accelerates the pathogenesis of neurological heterotopic ossification following spinal cord injury[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 2569-2574.DOI:10.1080/21691401.2019.1626865.
[7]
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond[J]. Physiol Rev, 2023,103(2):1565-1644.DOI:10.1152/physrev.00059.2021.
[8]
张凯,郝秀华,张金英,等.鼠降钙素基因相关肽放射免疫分析方法的建立及应用[J].军医进修学院学报,2011,32(11):1161-1163.DOI:11-3275/R.20110622.0858.001.Zhang K, Hao XH, Zhang JY, et al. Establishment of radioimmunoassay method for calcitonin gene-related peptide in rats[J]. J Chinese PLA Postgrad Med Sch, 2011, 32(11): 1161-1163.DOI:11-3275/R.20110622.0858.001.
[9]
段虎斌. 创伤性脑损伤神经源性机制及其干预实验研究[D].太原:山西医科大学,2013.Duan HB.Study on the neurogenic mechanisms of traumatic brain injury and intervention experiment[D]. Taiyuan: Shanxi Medical University,2013.
[10]
Gordon J, Amini S. General overview of neuronal cell culture[J].Methods Mol Biol, 2021, 2311: 1-8. DOI: 10.1007/978-1-0716-1437-2_1.
[11]
安祯祥,何远利,王敏,等.扶脾柔肝方含药血清对大鼠原代肝星状细胞上皮间质转化及自噬的影响[J].中药新药与临床药理,2019,30(4):408-415.DOI:10.19378/j.issn.1003-9783.2019.04.004.An ZX, He YL, Wang M, et al. Effects of Fupi Rougan recipe containing serum on eepithelial - mesenchymal transition and autophagy in rat primary hepatic stellate cells[J]. Traditional Chinese Drug Research and Clinical Pharmacology, 2019, 30(4):408-415.DOI:10.19378/j.issn.1003-9783.2019.04.004.
[12]
Fan B,Wei Z,Yao X,et al.Microenvironment imbalance of spinal cord injury[J]. Cell Transplant, 2018, 27(6): 853-866. DOI: 10.1177/0963689718755778.
[13]
Ambrozaitis KV, Kontautas E, Spakauskas B, et al. Pathophysiology of acute spinal cord injury[J]. Medicina (Kaunas), 2006, 42(3):255-261.
[14]
Ahuja CS,Nori S,Tetreault L,et al.Traumatic spinal cord injuryrepair and regeneration[J]. Neurosurgery, 2017, 80(3S): S9-S22.DOI:10.1093/neuros/nyw080.
[15]
Hoppanova L, Lacinova L. Voltage - dependent CaV3.2 and CaV2.2 channels in nociceptive pathways[J]. Pflugers Arch, 2022,474(4):421-434.DOI:10.1007/s00424-022-02666-y.
[16]
Huang MH, Knight PR 3rd, Izzo JL Jr. Ca2+-induced Ca2+ release involved in positive inotropic effect mediated by CGRP in ventricular myocytes[J]. Am J Physiol, 1999, 276(1): R259-R264.DOI:10.1152/ajpregu.1999.276.1.R259.
[17]
Nakazawa K, Saito H, Matsuki N. Effects of calcitonin generelated peptide (CGRP) on Ca(2+)-channel current of isolated smooth muscle cells from rat vas deferens[J].Naunyn Schmiedebergs Arch Pharmacol,1992,346(5):515-522.DOI:10.1007/bf00169006.
[18]
Al Dera H, Callaghan BP, Brock JA. Modified cytoplasmic Ca2+sequestration contributes to spinal cord injury-induced augmentation of nerve-evoked contractions in the rat tail artery[J]. PLoS One,2014,9(10):e111804.DOI:10.1371/journal.pone.0111804.
[19]
O'Hare Doig RL, Santhakumar S, Fehily B, et al. Acute cellular and functional changes with a combinatorial treatment of ion channel inhibitors following spinal cord injury[J]. Front Mol Neurosci,2020,13:1385.DOI:10.3389/fnmol.2020.00085.
[20]
Chung AM. Calcitonin gene - related peptide (CGRP): role in peripheral nerve regeneration[J]. Rev Neurosci, 2018, 29(4): 369-376.DOI:10.1515/revneuro-2017-0060.
[21]
Karami M,Bathaie SZ,Tiraihi T,et al.Crocin improved locomotor function and mechanical behavior in the rat model of contused spinal cord injury through decreasing calcitonin gene related peptide (CGRP)[J]. Phytomedicine, 2013, 21(1): 62-67. DOI: 10.1016/j.phymed.2013.07.013.
[22]
郭蜜,向建琴,魏连海,等.电针督脉对脊髓损伤大鼠脊髓损伤区降钙素基因相关肽与Nod样受体蛋白3表达的影响[J].针刺研究,2021,46(8):679-683.DOI:10.13702/j.1000-0607.200731.Guo M, Xiang JQ, Wei LH, et al. Effect of electroacupuncture of“Zhiyang”(GV9) and“Jizhong”(GV6) on expression of CGRP and NLRP3 in rats with spinal cord injury[J]. Acupuncture Research,2021,46(8):679-683.DOI:10.13702/j.1000-0607.200731.
[23]
Liu M, Chen H, Tong M, et al. Effects of ultra-early hyperbaric oxygen therapy on femoral calcitonin gene-related peptide and bone metabolism of rats with complete spinal transection[J]. Spine(Phila Pa 1976), 2018, 43(16): E919-E926. DOI: 10.1097/brs.0000000000002581.
[24]
Kumar PA, Stallman J, Kharbat Y, et al. Chemogenetic attenuation of acute nociceptive signaling enhances functional outcomes following spinal cord injury[J]. J Neurotrauma, 2024, 41(9-10):1060-1076.DOI:10.1089/neu.2023.0141.
[25]
An J, Jiang X, Wang Z, et al. Codelivery of minocycline hydrochloride and dextran sulfate via bionic liposomes for the treatment of spinal cord injury[J].Int J Pharm,2022,628:122285.DOI:10.1016/j.ijpharm.2022.122285.
[26]
姜胜,杨少青,王雨欣,等.右美托咪定抑制Ca2+超载保护大鼠脊髓缺血再灌注损伤[J]. 中国兽医学报, 2022, 42(8): 1660-1668.DOI:10.16303/j.cnki.1005-4545.2022.08.21.Jiang S, Yang SQ, Wang YX, et al. Dexmedetomidine protects spinal cord ischemia-reperfusion injury in rats by in-hibiting Ca2+overload[J]. Chin J Vet Sci, 2022, 42(8): 1660-1668. DOI: 10.16303/j.cnki.1005-4545.2022.08.21.
[27]
袁士阳.基于活体钙成像观察脊髓损伤后大脑皮层钙信号变化的实验研究[D].天津:天津医科大学,2020.Yuan SY. The study of cortical calcium signal changes after spinal cord injury based on in vivo calcium imaging[D]. Tianjin:Tianjin Medical University,2020.
[28]
徐纪伟,孙丹华,陈旭东.神经元型钙结合蛋白2 在大鼠脊髓损伤后表达及神经修复功能[J]. 中国老年学杂志, 2022, 42(19):4774-4778.DOI:10.3969/j.issn.1005-9202.2022.19.035.Xu JW, Sun DH, Chen XD. Expression of neuronal calcium bin protein 2 after spinal cord injury in rat and its nerve repair function[J]. Chin J Gerontol, 2022, 42(19): 4774 - 4778. DOI:10.3969/j.issn.1005-9202.2022.19.035.
[29]
Maggi CA,Giuliani S,Santicioli P,et al.Role of intracellular Ca2+in the K channel opener action of CGRP in the guinea-pig ureter[J]. Br J Pharmacol, 1996, 118(6): 1493-1503. DOI: 10.1111/j.1476-5381.1996.tb15565.x.
[30]
Dong YL, Vegiraju S, Yallampalli C. Ca2+ signaling in human fetoplacental vasculature: effect of CGRP on umbilical vein smooth muscle cytosolic Ca2+ concentration[J]. Am J Physiol Heart Circ Physiol, 2005, 289(2): H960-H967. DOI: 10.1152/ajpheart.00059.2005.
[31]
Mourelo Fariña M, Salvador de la Barrera S, Montoto Marqués A,et al. Update on traumatic acute spinal cord injury. Part 2[J]. Med Intensiva, 2017, 41(5): 306-315. DOI: 10.1016/j.medin.2016.10.014.
[32]
薛文.TBI 后脑细胞内Ca2+水平动态变化与CGRP 的相关性研究[D].太原:山西医科大学,2008.Xue W. The dynamic changes of brain intracellular Ca2+ levels and the relationship of the Ca2+ and CGRP after TBI[D]. Taiyuan:Shanxi Medical University,2008.
[33]
Jiang B, Sun D, Sun H, et al. Prevalence, incidence, and external causes of traumatic spinal cord injury in China: a nationally representative cross-sectional survey[J]. Front Neurol, 2021, 12:784647.DOI:10.3389/fneur.2021.784647.
[34]
Li C, Wu Z, Zhou L, et al. Temporal and spatial cellular and molecular pathological alterations with single-cell resolution in the adult spinal cord after injury[J]. Signal Transduct Target Ther,2022,7(1):65.DOI:10.1038/s41392-022-00885-4.
[1] 曹叙勇, 刘耀升. 脊柱转移瘤手术并发症研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 435-439.
[2] 袁丹, 钟潇, 王明松, 贾康. 脊髓损伤神经源性膀胱患者间歇导尿期间尿路感染病原菌分布及影响因素[J]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 229-236.
[3] 王楠楠, 刘文红, 孙立, 王婧. 脊髓损伤并发腹股沟嵌顿疝29例围手术期护理体会[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 473-476.
[4] 景水力, 王娟, 刘晔, 周亨, 熊威, 叶青松. 间充质干细胞在脊髓损伤中的应用及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 113-121.
[5] 李景德, 张保艳, 卢培刚, 李博. 法舒地尔对大鼠急性脊髓损伤后神经细胞凋亡和BCL-2蛋白表达水平的影响[J]. 中华神经创伤外科电子杂志, 2024, 10(02): 65-70.
[6] 陈业煌, 陈恺钦, 薛亮, 吴箭午, 黄预备, 魏梁锋, 曾炳香, 王守森. 改良大鼠挫伤型脊髓损伤模型的制备与评估[J]. 中华神经创伤外科电子杂志, 2023, 09(06): 325-332.
[7] 郭莉丽, 高谋, 徐如祥. 脊髓损伤的治疗新进展[J]. 中华神经创伤外科电子杂志, 2023, 09(06): 321-324.
[8] 姚尧, 杨新明, 杜雅坤, 朱宁, 阴彦林, 贾永利, 张瑛, 张培楠, 田野, 陈丽星. 雷公藤甲素与甲泼尼龙调节细胞自噬和凋亡促进脊髓损伤修复的比较研究[J]. 中华神经创伤外科电子杂志, 2022, 08(03): 132-140.
[9] 隋曌, 彭凤, 余凯, 严小虎, 李英, 钟琳, 刘晓银. 吸附NT-3的3D打印胶原蛋白/壳聚糖支架改善脊髓损伤后的运动功能[J]. 中华神经创伤外科电子杂志, 2021, 07(06): 331-338.
[10] 丁华, 张磊, 袁即山, 樊晓臣, 姚翔, 吕斌. 外泌体的神经免疫调节功能在脊髓损伤修复中作用的研究进展[J]. 中华神经创伤外科电子杂志, 2021, 07(05): 305-309.
[11] 曹宁, 张社敏, 方芳, 谢佳芯, 封雨, 邓洵鼎, 封亚平. 成人无骨折脱位型颈脊髓损伤早期手术的疗效[J]. 中华神经创伤外科电子杂志, 2021, 07(01): 42-45.
[12] 魏梁锋, 郑兆聪, 薛亮, 陈业煌, 王守森. 创伤性颈部脊髓损伤的外科治疗[J]. 中华神经创伤外科电子杂志, 2021, 07(01): 37-41.
[13] 李俸鑫, 许建文, 陈如玉, 李常秋, 王继羚, 谭秀伟, 卜海峰, 王海霖, 苏义基. 2015至2020年广西医科大学第一附属医院老年脊髓损伤的特征分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(01): 45-50.
[14] 左安俊, 欧振飞, 王天瑞, 丁磊, 李天予, 于腾波. 二甲胺四环素对小胶质细胞激活状态影响的研究[J]. 中华老年骨科与康复电子杂志, 2022, 08(03): 152-158.
[15] 臧苑彤, 张丽天, 杨美英, 赵小娟, 李莉. 聚焦解决模式对脊髓损伤伴截瘫患者残障接受度影响的研究[J]. 中华老年骨科与康复电子杂志, 2021, 07(02): 93-98.
阅读次数
全文


摘要