[1] |
Capizzi A, Woo J, Verduzco-Gutierrez M. Traumatic brain injury:an overview of epidemiology, pathophysiology, and medical management[J].Med Clin North Am,2020,104(2):213-238.DOI:10.1016/j.mcna.2019.11.001.
|
[2] |
Lee AL. Advanced imaging of traumatic brain injury[J]. Korean J Neurotrauma,2020,16(1):3-17.DOI:10.13004/kjnt.2020.16.e12.
|
[3] |
Hu L, Yang S, Jin B, et al. Advanced neuroimaging role in traumatic brain injury: a narrative review[J]. Front Neurosci,2022,16:872609.DOI:10.3389/fnins.2022.872609.
|
[4] |
Merkley TL.Introduction to the special section of neuropsychology review: advanced neuroimaging findings in mild traumatic brain injury[J].Neuropsychol Rev,2023,33(1):1-4.DOI:10.1007/s11065-022-09557-0.
|
[5] |
Flynn S, Leete J, Shahim P, et al. Extracellular vesicle concentrations of glial fibrillary acidic protein and neurofilament light measured 1 year after traumatic brain injury[J]. Sci Rep,2021,11(1):3896.DOI:10.1038/s41598-021-82875-0.
|
[6] |
Oris C, Pereira B, Durif J, et al. The biomarker S100B and mild traumatic brain injury: a meta-analysis[J]. Pediatrics, 2018, 141(6):e20180037.DOI:10.1542/peds.2018-0037.
|
[7] |
Hier DB, Obafemi-Ajayi T, Thimgan MS, et al. Blood biomarkers for mild traumatic brain injury: a selective review of unresolved issues[J].Biomark Res,2021,9(1):70.DOI:10.1186/s40364-021-00325-5.
|
[8] |
Mondello S, Sorinola A, Czeiter E, et al. Blood-based protein biomarkers for the management of traumatic brain injuries in adults presenting to emergency departments with mild brain injury: a living systematic review and meta-analysis[J]. J Neurotrauma,2021,38(8):1086-1106.DOI:10.1089/neu.2017.5182.
|
[9] |
El-Swaify ST, Kamel M, Ali SH, et al. Initial neurocritical care of severe traumatic brain injury: new paradigms and old challenges[J].Surg Neurol Int,2022,13:431.DOI:10.25259/sni_609_2022.
|
[10] |
Godoy DA, Seifi A, Chi G, et al. Intracranial pressure monitoring in moderate traumatic brain injury: a systematic review and metaanalysis[J]. Neurocrit Care, 2022, 37(2): 514-522. DOI: 10.1007/s12028-022-01533-z.
|
[11] |
Tas J, Czosnyka M, van der Horst ICC, et al. Cerebral multimodality monitoring in adult neurocritical care patients with acute brain injury: a narrative review[J]. Front Physiol, 2022, 13:1071161.DOI:10.3389/fphys.2022.1071161.
|
[12] |
Inaji M, Maehara T. Management of post-traumatic seizures and epilepsy[J]. No Shinkei Geka, 2021, 49(5): 986-993. DOI: 10.11477/mf.1436204481.
|
[13] |
Tani J,Wen YT,Hu CJ,et al.Current and potential pharmacologic therapies for traumatic brain injury[J]. Pharmaceuticals (Basel),2022,15(7):838.DOI:10.3390/ph 15070838.
|
[14] |
Ghiam MK, Patel SD, Hoffer A, et al. Drug repurposing in the treatment of traumatic brain injury[J]. Front Neurosci, 2021, 15:635483.DOI:10.3389/fnins.2021.635483.
|
[15] |
Lynch DG, Narayan RK, Li C. Multi-mechanistic approaches to the treatment of traumatic brain injury: a review[J]. J Clin Med,2023,12(6):2179.DOI:10.3390/jcm12062179.
|
[16] |
Mee H, Anwar F, Timofeev I, et al. Cranioplasty: a multidisciplinary approach[J]. Front Surg, 2022, 9: 864385. DOI:10.3389/fsurg.2022.864385.
|
[17] |
Goedemans T,Verbaan D,van der Veer O,et al.Complications in cranioplasty after decompressive craniectomy: timing of the intervention[J].J Neurol,2020,267(5):1312-1320.DOI:10.1007/s00415-020-09695-6.
|
[18] |
Aloraidi A, Alkhaibary A, Alharbi A, et al. Effect of cranioplasty timing on the functional neurological outcome and postoperative complications[J]. Surg Neurol Int, 2021, 12: 264. DOI: 10.25259/sni_802_2020.
|
[19] |
Fleming N. The associated benefits of a cranioplasty on rehabilitation: a review of the literature[J]. British Journal of Neuroscience Nursing,2020,16(6):266-271.DOI:10.12968/bjnn.2020.16.6.266.
|
[20] |
Wahlster S, Lin V. Therapeutic hypothermia in traumatic brain injury: Should we reheat the debate or let it cool down? [J].Neurocrit Care,2024,41(2):321-323.DOI:10.1007/s12028-024-02009-y.
|
[21] |
Chen H, Wu F, Yang P, et al. A meta-analysis of the effects of therapeutic hypothermia in adult patients with traumatic brain injury[J]. Crit Care, 2019, 23(1): 396. DOI: 10.1186/s13054-019-2667-3.
|
[22] |
Darrow D, Balser D, Netoff TI, et al. Epidural spinal cord stimulation facilitates immediate restoration of dormant motor and autonomic supraspinal pathways after chronic neurologically complete spinal cord injury[J].J Neurotrauma,2019,36(15):2325-2336.DOI:10.1089/neu.2018.6006.
|
[23] |
Shin SS, Krishnan V, Stokes W, et al. Transcranial magnetic stimulation and environmental enrichment enhances cortical excitability and functional outcomes after traumatic brain injury[J]. Brain Stimul, 2018, 11(6): 1306-1313. DOI: 10.1016/j.brs.2018.07.050.
|
[24] |
Cox CS Jr, Hetz RA, Liao GP, et al. Treatment of severe adult traumatic brain injury using bone marrow mononuclear cells[J].Stem Cells,2017,35(4):1065-1079.DOI:10.1002/stem.2538.
|
[25] |
Alam Bony B, Kievit FM. A role for nanoparticles in treating traumatic brain injury[J]. Pharmaceutics, 2019, 11(9): 473. DOI:10.3390/pharmaceutics11090473.
|
[26] |
Zinger A, Soriano S, Baudo G, et al. Biomimetic nanoparticles as a theranostic tool for traumatic brain injury[J]. Adv Funct Mater,2021,31(30):2100722.DOI:10.1002/adfm.202100722.
|