切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2023, Vol. 09 ›› Issue (06) : 321 -324. doi: 10.3877/cma.j.issn.2095-9141.2023.06.001

述评

脊髓损伤的治疗新进展
郭莉丽, 高谋, 徐如祥()   
  1. 610030 成都,电子科技大学附属医院·四川省人民医院神经外科
    100700 北京,解放军总医院第一医学中心神经外科医学部
  • 收稿日期:2023-11-03 出版日期:2023-12-15
  • 通信作者: 徐如祥

Recent progress in the treatment of spinal cord injury

Lili Guo, Mou Gao, Ruxiang Xu()   

  1. Department of Neurosurgery, Affiliated Hospital of University of Electronic Science and Technology of China/Sichuan Provincial People's Hospital, Chengdu 610030, China
    Department of Neurosurgery, First Medical Center of General Military Hospital, Beijing 100700, China
  • Received:2023-11-03 Published:2023-12-15
  • Corresponding author: Ruxiang Xu
  • Supported by:
    National Natural Science Foundation of China(81671189, 81971295)
引用本文:

郭莉丽, 高谋, 徐如祥. 脊髓损伤的治疗新进展[J]. 中华神经创伤外科电子杂志, 2023, 09(06): 321-324.

Lili Guo, Mou Gao, Ruxiang Xu. Recent progress in the treatment of spinal cord injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2023, 09(06): 321-324.

脊髓损伤属于中枢神经系统的重大疾病之一,患者常遗留永久性截瘫及膀胱直肠括约肌功能障碍,终身丧失劳动及生活自理能力,给家庭及社会带来沉重压力和经济负担。近年来,神经干细胞移植治疗、神经外泌体治疗、脑机接口-神经调控治疗、3D打印定制脊髓类器官修复等新技术快速发展,为脊髓损伤患者提供了更有效、更个性化的治疗新策略和新方法。本文针对脊髓损伤的治疗新进展作一述评。

Spinal cord injury is one of the major diseases of central nervous system. The patients suffered from permanent paraplegia and bladder and rectal sphincter dysfunction, and involved with life-long loss of the ability to work and self-care. The family and society were gone through heavy pressure and economic burden. In recent years, new technologies such as neural stem cells transplantation, neuroexosome therapy, brain-computer interface-neural regulation therapy and 3D-printed customized spinal cord organoid repair have been developed rapidly. It will provide more effective and personalized treatment for spinal cord injury patients with new strategies and new methods. This article provides a review of recent progress in the treatment of spinal cord injury.

[1]
Ke H, Yang H, Zhao Y, et al. 3D gelatin microsphere scaffolds promote functional recovery after spinal cord hemisection in rats[J]. Adv Sci (Weinh), 2023, 10(3): e2204528. DOI: 10.1002/advs.202204528.
[2]
Tetzlaff W, Okon EB, Karimi-Abdolrezaee S, et al. A systematic review of cellular transplantation therapies for spinal cord injury[J]. J Neurotrauma, 2011, 28(8): 1611-1682. DOI: 10.1089/neu.2009.1177.
[3]
Fan L, Liu C, Chen X, et al. Directing induced pluripotent stem cell derived neural stem cell fate with a three-dimensional biomimetic hydrogel for spinal cord injury repair[J]. ACS Appl Mater Interfaces, 2018, 10(21): 17742-17755. DOI: 10.1021/acsami.8b05293.
[4]
Karimi-Abdolrezaee S, Eftekharpour E. Stem cells and spinal cord injury repair[J]. Adv Exp Med Biol, 2012, 76053-73. DOI: 10.1007/978-1-4614-4090-1_4.
[5]
Assinck P, Duncan GJ, Hilton BJ, et al. Cell transplantation therapy for spinal cord injury[J]. Nat Neurosci, 2017, 20(5): 637-647. DOI: 10.1038/nn.4541.
[6]
Xi K, Gu Y, Tang J, et al. Microenvironment-responsive immunoregulatory electrospun fibers for promoting nerve function recovery[J]. Nat Commun, 2020, 11(1): 4504. DOI: 10.1038/s41467-020-18265-3.
[7]
Vasanthan LT, Nehrujee A, Solomon J, et al. Electrical stimulation for people with spinal cord injury[J]. Cochrane Database Syst Rev, 2019, 2019(11): CD013481. DOI: 10.1002/14651858.CD013481
[8]
Mak JN, Wolpaw JR. Clinical applications of brain-computer interfaces: current state and future prospects[J]. IEEE Rev Biomed Eng, 2009, 2: 187-199. DOI: 10.1109/rbme.2009.2035356.
[9]
Sui Y, Yu H, Zhang C, et al. Deep brain-machine interfaces: Sensing and modulating the human deep brain[J]. Natl Sci Rev, 2022, 9(10): nwac212. DOI: 10.1093/nsr/nwac212.
[10]
O'Doherty JE, Lebedev MA, Ifft PJ, et al. Active tactile exploration using a brain-machine-brain interface[J]. Nature, 2011, 479(7372): 228-231. DOI: 10.1038/nature10489.
[11]
Griffin JM, Bradke F. Therapeutic repair for spinal cord injury: combinatory approaches to address a multifaceted problem[J]. EMBO Mol Med, 2020, 12(3): e11505. DOI: 10.15252/emmm.201911505.
[12]
Han Q, Jin W, Xiao Z, et al. The promotion of neural regeneration in an extreme rat spinal cord injury model using a collagen scaffold containing a collagen binding neuroprotective protein and an EGFR neutralizing antibody[J]. Biomaterials, 2010, 31(35): 9212-9220. DOI: 10.1016/j.biomaterials.2010.08.040.
[13]
Liu W, Xu B, Zhao S, et al. Spinal cord tissue engineering via covalent interaction between biomaterials and cells[J]. Sci Adv, 2023, 9(6): eade8829. DOI: 10.1126/sciadv.ade8829.
[14]
Phang I, Zoumprouli A, Papadopoulos MC, et al. Microdialysis to optimize cord perfusion and drug delivery in spinal cord injury[J]. Ann Neurol, 2016, 80(4): 522-531. DOI: 10.1002/ana.24750.
[15]
Ren H, Chen X, Tian M, et al. Regulation of inflammatory cytokines for spinal cord injury repair through local delivery of therapeutic agents[J]. Adv Sci (Weinh), 2018, 5(11): 1800529. DOI: 10.1002/advs.201800529.
[16]
Chen S, Li R, Li X, et al. Electrospinning: an enabling nanotechnology platform for drug delivery and regenerative medicine[J]. Adv Drug Deliv Rev, 2018, 132: 188-213. DOI: 10.1016/j.addr.2018.05.001.
[17]
Bonizzato M, James ND, Pidpruzhnykova G, et al. Multi-pronged neuromodulation intervention engages the residual motor circuitry to facilitate walking in a rat model of spinal cord injury[J]. Nat Commun, 2021, 12(1): 1925. DOI: 10.1038/s41467-021-22137-9.
[18]
Griffin JM, Bradke F. Therapeutic repair for spinal cord injury: combinatory approaches to address a multifaceted problem[J]. EMBO Mol Med, 2020, 12(3): e11505. DOI: 10.15252/emmm.201911505.
[19]
Girgis J, Merrett D, Kirkland S, et al. Reaching training in rats with spinal cord injury promotes plasticity and task specific recovery[J]. Brain, 2007, 130(Pt 11): 2993-3003. DOI: 10.1093/brain/awm245.
[1] 周伟, 蔡恒, 范海迪, 李惠中, 王传霞, 顾茂胜. cblC型甲基丙二酸血症MMACHC基因新突变对小鼠神经细胞凋亡及Wnt/β-catenin信号通路的作用机制[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 528-539.
[2] 曹叙勇, 刘耀升. 脊柱转移瘤手术并发症研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 435-439.
[3] 王楠楠, 刘文红, 孙立, 王婧. 脊髓损伤并发腹股沟嵌顿疝29例围手术期护理体会[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 473-476.
[4] 刘伟华, 赵宇, 刘仲凤, 吴焕童, 张广吉, 陈志国. 神经干细胞生物制剂治疗中枢神经系统恶性肿瘤的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(01): 59-62.
[5] 陈业煌, 陈恺钦, 薛亮, 吴箭午, 黄预备, 魏梁锋, 曾炳香, 王守森. 改良大鼠挫伤型脊髓损伤模型的制备与评估[J]. 中华神经创伤外科电子杂志, 2023, 09(06): 325-332.
[6] 姚尧, 杨新明, 杜雅坤, 朱宁, 阴彦林, 贾永利, 张瑛, 张培楠, 田野, 陈丽星. 雷公藤甲素与甲泼尼龙调节细胞自噬和凋亡促进脊髓损伤修复的比较研究[J]. 中华神经创伤外科电子杂志, 2022, 08(03): 132-140.
[7] 徐如祥, 邱文乔. 生物组装类脑生态位促进神经再生修复展望[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 1-5.
[8] 隋曌, 彭凤, 余凯, 严小虎, 李英, 钟琳, 刘晓银. 吸附NT-3的3D打印胶原蛋白/壳聚糖支架改善脊髓损伤后的运动功能[J]. 中华神经创伤外科电子杂志, 2021, 07(06): 331-338.
[9] 丁华, 张磊, 袁即山, 樊晓臣, 姚翔, 吕斌. 外泌体的神经免疫调节功能在脊髓损伤修复中作用的研究进展[J]. 中华神经创伤外科电子杂志, 2021, 07(05): 305-309.
[10] 李俸鑫, 许建文, 陈如玉, 李常秋, 王继羚, 谭秀伟, 卜海峰, 王海霖, 苏义基. 2015至2020年广西医科大学第一附属医院老年脊髓损伤的特征分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(01): 45-50.
[11] 左安俊, 欧振飞, 王天瑞, 丁磊, 李天予, 于腾波. 二甲胺四环素对小胶质细胞激活状态影响的研究[J]. 中华老年骨科与康复电子杂志, 2022, 08(03): 152-158.
[12] 张莉, 张明, 张秀芳, 周敬杰, 岑蒙蒙, 袁艳秋, 朱秀清. 基于想象疗法的闭环脑机接口训练对脑卒中后偏瘫患者上肢功能的影响[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(06): 360-364.
[13] 周庆忠, 冯晓兰, 何萍, 张戈, 赵茂, 白永恒, 冯大雄. 封闭Notch信号影响神经干细胞分化的体外研究[J]. 中华临床医师杂志(电子版), 2022, 16(06): 579-587.
[14] 殷秀梅, 杨丽红, 姜涛, 杜元灏. 基于神经干细胞探讨巢蛋白在缺血性脑卒中中的作用机制及针刺效应[J]. 中华针灸电子杂志, 2023, 12(03): 111-116.
[15] 马晓瑭, 王艳, 李素青, 刘金花, 石雨萌, 潘群文. 富含miR-132-3p的神经干细胞释放的外泌体激活MEK1/2/-ERK1/2通路改善缺氧无糖诱导的脑微血管内皮细胞损伤[J]. 中华脑血管病杂志(电子版), 2022, 16(03): 172-181.
阅读次数
全文


摘要