[1] |
Ke H, Yang H, Zhao Y, et al. 3D gelatin microsphere scaffolds promote functional recovery after spinal cord hemisection in rats[J]. Adv Sci (Weinh), 2023, 10(3): e2204528. DOI: 10.1002/advs.202204528.
|
[2] |
Tetzlaff W, Okon EB, Karimi-Abdolrezaee S, et al. A systematic review of cellular transplantation therapies for spinal cord injury[J]. J Neurotrauma, 2011, 28(8): 1611-1682. DOI: 10.1089/neu.2009.1177.
|
[3] |
Fan L, Liu C, Chen X, et al. Directing induced pluripotent stem cell derived neural stem cell fate with a three-dimensional biomimetic hydrogel for spinal cord injury repair[J]. ACS Appl Mater Interfaces, 2018, 10(21): 17742-17755. DOI: 10.1021/acsami.8b05293.
|
[4] |
Karimi-Abdolrezaee S, Eftekharpour E. Stem cells and spinal cord injury repair[J]. Adv Exp Med Biol, 2012, 76053-73. DOI: 10.1007/978-1-4614-4090-1_4.
|
[5] |
Assinck P, Duncan GJ, Hilton BJ, et al. Cell transplantation therapy for spinal cord injury[J]. Nat Neurosci, 2017, 20(5): 637-647. DOI: 10.1038/nn.4541.
|
[6] |
Xi K, Gu Y, Tang J, et al. Microenvironment-responsive immunoregulatory electrospun fibers for promoting nerve function recovery[J]. Nat Commun, 2020, 11(1): 4504. DOI: 10.1038/s41467-020-18265-3.
|
[7] |
Vasanthan LT, Nehrujee A, Solomon J, et al. Electrical stimulation for people with spinal cord injury[J]. Cochrane Database Syst Rev, 2019, 2019(11): CD013481. DOI: 10.1002/14651858.CD013481
|
[8] |
Mak JN, Wolpaw JR. Clinical applications of brain-computer interfaces: current state and future prospects[J]. IEEE Rev Biomed Eng, 2009, 2: 187-199. DOI: 10.1109/rbme.2009.2035356.
|
[9] |
Sui Y, Yu H, Zhang C, et al. Deep brain-machine interfaces: Sensing and modulating the human deep brain[J]. Natl Sci Rev, 2022, 9(10): nwac212. DOI: 10.1093/nsr/nwac212.
|
[10] |
O'Doherty JE, Lebedev MA, Ifft PJ, et al. Active tactile exploration using a brain-machine-brain interface[J]. Nature, 2011, 479(7372): 228-231. DOI: 10.1038/nature10489.
|
[11] |
Griffin JM, Bradke F. Therapeutic repair for spinal cord injury: combinatory approaches to address a multifaceted problem[J]. EMBO Mol Med, 2020, 12(3): e11505. DOI: 10.15252/emmm.201911505.
|
[12] |
Han Q, Jin W, Xiao Z, et al. The promotion of neural regeneration in an extreme rat spinal cord injury model using a collagen scaffold containing a collagen binding neuroprotective protein and an EGFR neutralizing antibody[J]. Biomaterials, 2010, 31(35): 9212-9220. DOI: 10.1016/j.biomaterials.2010.08.040.
|
[13] |
Liu W, Xu B, Zhao S, et al. Spinal cord tissue engineering via covalent interaction between biomaterials and cells[J]. Sci Adv, 2023, 9(6): eade8829. DOI: 10.1126/sciadv.ade8829.
|
[14] |
Phang I, Zoumprouli A, Papadopoulos MC, et al. Microdialysis to optimize cord perfusion and drug delivery in spinal cord injury[J]. Ann Neurol, 2016, 80(4): 522-531. DOI: 10.1002/ana.24750.
|
[15] |
Ren H, Chen X, Tian M, et al. Regulation of inflammatory cytokines for spinal cord injury repair through local delivery of therapeutic agents[J]. Adv Sci (Weinh), 2018, 5(11): 1800529. DOI: 10.1002/advs.201800529.
|
[16] |
Chen S, Li R, Li X, et al. Electrospinning: an enabling nanotechnology platform for drug delivery and regenerative medicine[J]. Adv Drug Deliv Rev, 2018, 132: 188-213. DOI: 10.1016/j.addr.2018.05.001.
|
[17] |
Bonizzato M, James ND, Pidpruzhnykova G, et al. Multi-pronged neuromodulation intervention engages the residual motor circuitry to facilitate walking in a rat model of spinal cord injury[J]. Nat Commun, 2021, 12(1): 1925. DOI: 10.1038/s41467-021-22137-9.
|
[18] |
Griffin JM, Bradke F. Therapeutic repair for spinal cord injury: combinatory approaches to address a multifaceted problem[J]. EMBO Mol Med, 2020, 12(3): e11505. DOI: 10.15252/emmm.201911505.
|
[19] |
Girgis J, Merrett D, Kirkland S, et al. Reaching training in rats with spinal cord injury promotes plasticity and task specific recovery[J]. Brain, 2007, 130(Pt 11): 2993-3003. DOI: 10.1093/brain/awm245.
|