切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2024, Vol. 10 ›› Issue (02) : 65 -70. doi: 10.3877/cma.j.issn.2095-9141.2024.02.001

基础研究

法舒地尔对大鼠急性脊髓损伤后神经细胞凋亡和BCL-2蛋白表达水平的影响
李景德1, 张保艳2, 卢培刚3,(), 李博3   
  1. 1. 250031 济南,济南市第四人民医院神经外科
    2. 250031 济南,山东第一医科大学第三附属医院神经内科
    3. 250031 济南,解放军联勤保障部队第九六〇医院神经外科
  • 收稿日期:2023-08-07 出版日期:2024-04-15
  • 通信作者: 卢培刚

Effect of Fasudil on neuronal apoptosis and expression of BCL-2 protein after acute spinal cord injury in rats

Jingde Li1, Baoyan Zhang2, Peigang Lu3,(), Bo Li3   

  1. 1. Department of Neurosurgery, the Fourth People's Hospital of Ji'nan, Ji'nan 250031, China
    2. Department of Neurology, the Third Affiliated Hospital of Shandong First Medical University, Ji'nan 250031, China
    3. Department of Neurosurgery, the 960th Hospital of the Joint Logistics Support Force of the People's Liberation Army, Ji'nan 250031, China
  • Received:2023-08-07 Published:2024-04-15
  • Corresponding author: Peigang Lu
  • Supported by:
    National Natural Science Foundation of China General Project(81471214)
引用本文:

李景德, 张保艳, 卢培刚, 李博. 法舒地尔对大鼠急性脊髓损伤后神经细胞凋亡和BCL-2蛋白表达水平的影响[J]. 中华神经创伤外科电子杂志, 2024, 10(02): 65-70.

Jingde Li, Baoyan Zhang, Peigang Lu, Bo Li. Effect of Fasudil on neuronal apoptosis and expression of BCL-2 protein after acute spinal cord injury in rats[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2024, 10(02): 65-70.

目的

探讨法舒地尔通过抑制Rho激酶活性对急性脊髓损伤(SCI)后神经细胞凋亡和BCL-2蛋白表达水平的影响。

方法

选取清洁级健康成年雌性Wistar大鼠90只,随机分为假手术组、SCI对照组和SCI治疗组,每组30只。SCI对照组和SCI治疗组均选取大鼠脊髓T10节段为损伤节段,剪断脊髓的后3/4深度损伤;假手术组只行椎板切除术,不进行脊髓的损伤。3组分别于造模后6 h和1、3、7、14 d各取6只大鼠,采用开放场地试验(BBB)运动功能评分法对大鼠的后肢运动功能进行评价;采用TUNEL法检测大鼠SCI局部的神经细胞凋亡;采用免疫组织化学法检测BCL-2蛋白的表达水平。

结果

大鼠SCI模型制备后,假手术组大鼠双后肢活动正常,各时间点的BBB评分均为21分;SCI对照组和SCI治疗组在SCI后6 h和1 d的BBB评分均为0分,而后逐渐增高。SCI治疗组SCI后3、7、14 d的BBB评分均高于SCI对照组,差异均有统计学意义(P<0.05)。SCI后6 h及1、3、7、14 d,SCI治疗组的TUNEL阳性细胞数少于SCI对照组,BCL-2蛋白阳性细胞数多于SCI对照组,差异均有统计学意义(P<0.05)。

结论

SCI后早期应用Rho激酶抑制剂法舒地尔可以抑制神经细胞凋亡,促进BCL-2蛋白的表达,有助于脊髓神经功能恢复。

Objective

To explore the effects of the drug Fasudil on neuronal apoptosis and BCL-2 protein expression levels after spinal cord injury (SCI) by inhibiting Rho-kinase activity.

Methods

Ninety clean and healthy adult female Wistar rats were selected and randomly divided into sham surgery group, SCI control group, and SCI treatment group, with 30 rats in each group. Both SCI control group and SCI treatment group selected the T10 segment of the rat spinal cord as the injury segment, and cut the posterior 3/4 depth of the SCI; The sham surgery group only underwent laminectomy without SCI. Six rats were selected from 3 groups at 6 h and 1, 3, 7, and 14 d after modeling, and their hind limb motor function was evaluated using the Basso, Beattie and Bresnehan open field locomotor test (BBB) motor function scoring method; The TUNEL method was used to detect neuronal apoptosis in the local area of SCI in rats; Immunohistochemical method was used to detect the expression level of BCL-2 protein.

Results

After the preparation of the SCI model in rats, the sham surgery group showed normal activity of both hind limbs and a BBB score of 21 points at each time point; The BBB scores of both SCI control group and SCI treatment group were 0 points at 6 h and 1 d after SCI, and gradually increased thereafter. The BBB scores of SCI treatment group at 3, 7, and 14 d after SCI were higher than those of SCI control group, and the differences were statistically significant (P<0.05). At 6 h, 1, 3, 7, and 14 d after SCI, the number of TUNEL positive cells in SCI treatment group was lower than that in SCI control group, and the number of BCL-2 protein positive cells was higher than that in SCI control group, with statistical significance (P<0.05).

Conclusion

Early application of the Rho-kinase inhibitor Fasudil after SCI inhibits neuronal apoptosis and promotes BCL-2 protein expression, which contributes to the recovery of spinal cord neurological function.

表1 3组大鼠SCI后不同时间点BBB评分比较(分,±s
Tab.1 Comparison of BBB scores at different time periods after SCI in three groups of rats (score, Mean±SD)
图1 2组大鼠急性SCI后神经细胞凋亡染色图(TUNEL染色,×100)A~E:SCI对照组(A:SCI后6 h;B:SCI后1 d;C:SCI后3 d;D:SCI后7 d;E:SCI后14 d);F~J:SCI治疗组(F:SCI后6 h;G:SCI后1 d;H:SCI后3 d;I:SCI后7 d;J:SCI后14 d)
Fig.1 Staining plots of neuronal apoptosis after acute SCI in two groups of rats (TUNEL staining, ×100)
表2 2组大鼠SCI后各时间点TUNEL阳性细胞数比较(±s
Tab.2 Comparison of TUNEL positive cells at different time points after SCI in two groups of rats (Mean±SD)
图2 2组大鼠急性SCI后BCL-2免疫组织化学染色图(EnVision,×200)A~E:SCI对照组(A:SCI后6 h;B:SCI后1 d;C:SCI后3 d;D:SCI后7 d;E:SCI后14 d);F~J:SCI治疗组(F:SCI后6 h;G:SCI后1 d;H:SCI后3 d;I:SCI后7 d;J:SCI后14 d)
Fig.2 Immunohistochemical staining of BCL-2 after acute SCI in two groups of rats (EnVision, ×200)
表3 2组大鼠SCI后各时间点BCL-2蛋白阳性细胞数比较(±s
Tab.3 Comparison of BCL-2 protein positive cells count at different time points after SCI between two groups of rats (Mean±SD)
[1]
Nakagawa O, Fujisawa K, Ishizaki T, et al. Rock-I and rock-II, two isoforms of rho-associated coiled-coil forming protein serine/threonine kinase in mice[J]. FEBS Lett, 1996, 392(2): 189-193. DOI: 10.1016/0014-5793(96)00811-3.
[2]
Fehlings MG, Wilson JR, Tetreault LA, et al. A clinical practice guideline for the management of patients with acute spinal cord injury: recommendations on the use of methylprednisolone sodium succinate[J]. Global Spine J, 2017, 7(3 Suppl): 203S-211S. DOI: 10.1177/2192568217703085.
[3]
Fu P, Tang R, Yu Z, et al. Rho-associated kinase inhibitors promote microglial uptake via the ERK signaling pathway[J]. Neurosci Bull, 2016, 32(1): 83-91. DOI: 10.1007/s12264-016-0013-1.
[4]
O'Toole JE, Kaiser MG, Anderson PA, et al. Congress of neurological surgeons systematic review and evidence-based guidelines on the evaluation and treatment of patients with thoracolumbar spine trauma: executive summary[J]. Neurosurgery, 2019, 84(1): 2-6. DOI: 10.1093/neuros/nyy394.
[5]
Julian L, Olson MF. Rho-associated coiled-coil containing kinases (ROCK): structure, regulation, and functions[J]. Small GTPases, 2014, 5: e29846. DOI: 10.4161/sgtp.29846.
[6]
Hu X, Leak RK, Shi Y, et al. Microglial and macrophage polarization-new prospects for brain repair[J]. Nat Rev Neurol, 2015, 11(1): 56-64. DOI: 10.1038/nrneurol.2014.207.
[7]
Kopp MA, Liebscher T, Watzlawick R, et al. Scissor-spinal cord injury study on small molecule-derived rho inhibition: a clinical study protocol[J]. BMJ Open, 2016, 6(7): e010651. DOI: 10.1136/bmjopen-2015-010651.
[8]
Al-Gayyar MM, Mysona BA, Matragoon S, et al. Diabetes and overexpression of proNGF cause retinal neurodegeneration via activation of RhoA pathway[J]. PLoS One, 2013, 8(1): e54692. DOI: 10.1371/journal.pone.0054692.
[9]
Popgeorgiev N, Sa JD, Jabbour L, et al. Ancient and conserved functional interplay between Bcl-2 family proteins in the mitochondrial pathway of apoptosis[J]. Sci Adv, 2020, 6(40): eabc4149. DOI: 10.1126/sciadv.abc4149.
[10]
Frisca F, Colquhoun D, Goldshmit Y, et al. Role of ectonucleotide pyrophosphatase/phosphodiesterase 2 in the midline axis formation of zebrafish[J]. Sci Rep, 2016, 6: 37678. DOI: 10.1038/srep37678.
[11]
Hall A. Rho GTPases and the actin cytoskeleton[J]. Science, 1998, 279(5350): 509-514. DOI: 10.1126/science.279.5350.509.
[12]
Borisoff JF, Chan CC, Hiebert G, et al. Suppression of Rho-kinase activity promotes axonal growth on inhibitory CNS substrates[J]. Mol Cell Neurosci, 2003, 22(3): 405-416. DOI: 10.1016/s1044-7431(02)00032-5.
[13]
Schnitzler AC, Mellott TJ, Lopez-Coviella I, et al. BMP9 (bone morphogenetic protein 9) induces NGF as an autocrine/paracrine cholinergic trophic factor in developing basal forebrain neurons[J]. J Neurosci, 2010, 30(24): 8221-8228. DOI: 10.1523/jneurosci.5611-09.2010.
[14]
Neumann H, Schweigreiter R, Yamashita T, et al. Tumor necrosis factor inhibits neurite outgrowth and branching of hippocampal neurons by a rho-dependent mechanism[J]. J Neurosci, 2002, 22(3): 854-862. DOI: 10.1523/jneurosci.22-03-00854.2002.
[15]
Kwakowsky A, Milne MR, Waldvogel HJ, et al. Effect of estradiol on neurotrophin receptors in basal forebrain cholinergic neurons: relevance for Alzheimer's disease[J]. Int J Mol Sci, 2016, 17(12): 2122. DOI: 10.3390/ijms17122122.
[16]
Aloe L, Bianchi P, De Bellis A, et al. Intranasal nerve growth factor bypasses the blood-brain barrier and affects spinal cord neurons in spinal cord injury[J]. Neural Regen Res, 2014, 9(10): 1025-1030. DOI: 10.4103/1673-5374.133161.
[17]
El Touny LH, Henderson F, Djakiew D. Biochanin a reduces drug-induced p75NTR expression and enhances cell survival: a new in vitro assay for screening inhibitors of p75NTR expression[J]. Rejuvenation Res, 2010, 13(5): 527-537. DOI: 10.1089/rej.2009.1006.
[18]
Miraglia AG, Travaglione S, Meschini S, et al. Cytotoxic necrotizing factor 1 prevents apoptosis via the Akt/IkappaB kinase pathway: role of nuclear factor-kappaB and Bcl-2[J]. Mol Biol Cell, 2007, 18(7): 2735-2744. DOI: 10.1091/mbc.e06-10-0910.
[19]
Komarova YA, Kruse K, Mehta D, et al. Protein interactions at endothelial junctions and signaling mechanisms regulating endothelial permeability[J]. Circ Res, 2017, 120(1): 179-206. DOI: 10.1161/circresaha.116.306534.
[20]
Zhang K, Jiang D. Rhoa inhibits the hypoxia-induced apoptosis and mitochondrial dysfunction in chondrocytes via positively regulating the CREB phosphorylation[J]. Biosci Rep, 2017, 37(2): BSR20160622. DOI: 10.1042/bsr20160622.
[21]
van Buul JD, Geerts D, Huveneers S. Rho GAPs and GEFs: controling switches in endothelial cell adhesion[J]. Cell Adh Migr, 2014, 8(2): 108-124. DOI: 10.4161/cam.27599.
[22]
Bao W, Hu E, Tao L, et al. Inhibition of Rho-kinase protects the heart against ischemia/reperfusion injury[J]. Cardiovasc Res, 2004, 61(3): 548-558. DOI: 10.1016/j.cardiores.2003.12.004.
[23]
Takanashi Y, Ishida T, Kirchmeier MJ, et al. Neuroprotection by intrathecal application of liposome-entrapped fasudil in a rat model of ischemia[J]. Neurol Med Chir (Tokyo), 2001, 41(3): 107-113; discussion 113-114. DOI: 10.2176/nmc.41.107.
[24]
崔刚,肖友朝,王欢,等. RHO/ROCK信号通路对创伤性脑损伤后颅内神经系统微环境的影响[J].中华神经创伤外科电子杂志, 2022, 8(4): 204-208. DOI: 10.3877/cma.j.issn.2095-9141.2022.04.003.
[1] 王帆, 余辉, 谢佳乐, 许焕焕, 马瑞, 依日夏提·艾海提, 许珂, 许鹏. 成纤维样滑膜细胞在类风湿关节炎发病机制中的作用[J]. 中华关节外科杂志(电子版), 2024, 18(02): 375-380.
[2] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[3] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[4] 周伟, 蔡恒, 范海迪, 李惠中, 王传霞, 顾茂胜. cblC型甲基丙二酸血症MMACHC基因新突变对小鼠神经细胞凋亡及Wnt/β-catenin信号通路的作用机制[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 528-539.
[5] 徐煜琛, 李璐, 薛冬令, 赵德伟. 外泌体介导股骨头坏死机制与治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(03): 247-252.
[6] 罗远杰, 杨靖梅, 孟姝, 敖逸博, 申道南. 槲皮素防治口腔疾病的研究进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 117-122.
[7] 刘硕儒, 王功炜, 张斌, 李书豪, 胡成. 新型溶瘤病毒M1激活内质网应激致前列腺癌细胞凋亡的机制[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 388-393.
[8] 王颖, 吴德平, 刘煜, 刘国栋. miR-9-5p下调CXCR4减轻创伤性脑损伤大鼠的神经炎症和细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 65-72.
[9] 唐龙观, 邬绿莹, 王海红, 陈婉丝, 杨盛英. MTHFR基因多态性与胎盘细胞凋亡的相关性研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(05): 272-276.
[10] 邓春文, 陈嵩, 钟裴, 闵师强, 万健. LncRNA CRNDE通过miR-181a-5p/SOX6轴调节脂多糖诱导人肺泡上皮细胞的炎症反应和细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 129-136.
[11] 田鹏飞, 王丽娟, 肖圣超. 黄芪总黄酮通过调控miR-190a-5p对缺氧/复氧诱导的心肌细胞损伤的影响[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 346-352.
[12] 张师垚, 徐岩岩, 张琦, 李春强, 赵智成, 刘刚. m6A结合蛋白YTHDC2调节p38MAPK信号通路影响结直肠癌细胞凋亡[J]. 中华结直肠疾病电子杂志, 2023, 12(02): 117-124.
[13] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[14] 易勤, 谢小琴, 刘珈言, 李二龙, 赵文彬, 杨礼凤, 梅蓉. 光动力疗法联合薇诺娜屏障特护霜治疗光化性角化病的疗效及其对RUNX3、Bcl-2和Cer水平的影响[J]. 中华临床医师杂志(电子版), 2022, 16(10): 970-974.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要