[1] |
Hu Y, Li L, Hong B, et al. Epidemiological features of traumatic spinal cord injury in China:a systematic review and meta-analysis[J]. Front Neurol, 2023, 14: 1131791. DOI: 10.3389/fneur.2023.1131791.
|
[2] |
Sterner RC, Brooks NP. Early decompression and short transport time after traumatic spinal cord injury are associated with higher American spinal injury association impairment scale conversion[J]. Spine (Phila Pa 1976), 2022, 47(1): 59-66. DOI: 10.1097/brs.0000000000004121.
|
[3] |
Burke JF, Yue JK, Ngwenya LB, et al. Ultra-early (<12 hours)surgery correlates with higher rate of American spinal injury association impairment scale conversion after cervical spinal cord injury[J]. Neurosurgery, 2019, 85(2): 199-203. DOI: 10.1093/neuros/nyy537.
|
[4] |
Chio JCT, Xu KJ, Popovich P, et al. Neuroimmunological therapies for treating spinal cord injury: evidence and future perspectives[J]. Exp Neurol, 2021, 341: 113704. DOI: 10.1016/j.expneurol.2021.113704.
|
[5] |
Hellenbrand DJ, Quinn CM, Piper ZJ, et al. Inflammation after spinal cord injury: a review of the critical timeline of signaling cues and cellular infiltration[J]. J Neuroinflammation, 2021, 18(1):284.DOI:10.1186/s12974-021-02337-2.
|
[6] |
Sterner RC, Sterner RM. Immune response following traumatic spinal cord injury: pathophysiology and therapies[J]. Front Immunol,2022,13:1084101.DOI:10.3389/fimmu.2022.1084101.
|
[7] |
余鹏飞,麦兴进,符树强,等.血清sTREM-1、IL-12 及IL-33 水平对创伤性脑损伤严重程度和预后评估的价值[J].中华神经创伤外科电子杂志, 2022, 8(1): 18-22. DOI: 10.3877/cma.j.issn.2095-9141.2022.01.004.Yu PF, Mai XJ, Fu SQ, et al. Value of serum levels of sTREM-1,IL-12 and IL-33 in evaluating the severity and prognosis of traumatic brain injury[J]. Chin J Neurotrauma Surg (Electronic Edition), 2022, 8(1): 18-22. DOI: 10.3877/cma.j.issn.2095-9141.2022.01.004.
|
[8] |
Kyritsis N, Torres-Espín A, Schupp PG, et al. Diagnostic blood rna profiles for human acute spinal cord injury[J]. J Exp Med,2021,218(3):e20201795.DOI:10.1084/jem.20201795.
|
[9] |
Morrison D, Pinpin C, Lee A, et al. Profiling immunological phenotypes in individuals during the first year after traumatic spinal cord injury: a longitudinal analysis[J]. J Neurotrauma,2023,40(23-24):2621-2637.DOI:10.1089/neu.2022.0500.
|
[10] |
Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologistoriented resource for the analysis of systems-level datasets[J]. Nat Commun,2019,10(1):1523.DOI:10.1038/s41467-019-09234-6.
|
[11] |
Xie C, Mao X, Huang J, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases[J].Nucleic Acids Res,2011,39(Web Server issue):W316-W322.DOI:10.1093/nar/gkr483.
|
[12] |
Tang D,Chen M,Huang X,et al.SRplot:a free online platform for data visualization and graphing[J]. PLoS One, 2023, 18(11):e0294236.DOI:10.1371/journal.pone.0294236.
|
[13] |
Fehlings MG, Vaccaro A, Wilson JR, et al. Early versus delayed decompression for traumatic cervical spinal cord injury: results of the surgical timing in acute spinal cord injury study (STASCIS)[J].PLoS One,2012,7(2):e32037.DOI:10.1371/journal.pone.0032037.
|
[14] |
Brommer B, Engel O, Kopp MA, et al. Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level[J]. Brain, 2016, 139(Pt 3): 692-707.DOI:10.1093/brain/awv375.
|
[15] |
Yates AG, Anthony DC, Ruitenberg MJ, et al. Systemic immune response to traumatic CNS injuries-are extracellular vesicles the missing link?[J]. Front Immunol, 2019, 10: 2723. DOI: 10.3389/fimmu.2019.02723.
|
[16] |
DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details[J].J Neurochem,2016,139 Suppl 2(Suppl 2):136-153.DOI:10.1111/jnc.13607.
|
[17] |
Ahadi R, Khodagholi F, Daneshi A, et al. Diagnostic value of serum levels of GFAP, pNF-H, and NSE compared with clinical findings in severity assessment of human traumatic spinal cord injury[J]. Spine (Phila Pa 1976), 2015, 40(14): E823-E830. DOI:10.1097/brs.0000000000000654.
|
[18] |
Leister I, Haider T, Mattiassich G, et al. Biomarkers in traumatic spinal cord injury-technical and clinical considerations:a systematic review[J]. Neurorehabil Neural Repair, 2020, 34(2): 95-110. DOI:10.1177/1545968319899920.
|
[19] |
Bloom O, Herman PE, Spungen AM. Systemic inflammation in traumatic spinal cord injury[J]. Exp Neurol, 2020, 325: 113143.DOI:10.1016/j.expneurol.2019.113143.
|
[20] |
McCoy DB, Dupont SM, Gros C, et al. Convolutional neural network-based automated segmentation of the spinal cord and contusion injury: deep learning biomarker correlates of motor impairment in acute spinal cord injury[J]. AJNR Am J Neuroradiol,2019,40(4):737-744.DOI:10.3174/ajnr.A6020.
|
[21] |
Tsolinas RE, Burke JF, DiGiorgio AM, et al. Transforming research and clinical knowledge in spinal cord injury (TRACKSCI): an overview of initial enrollment and demographics[J].Neurosurg Focus, 2020, 48(5): E6. DOI: 10.3171/2020.2.Focus 191030.
|
[22] |
Herman P, Stein A, Gibbs K, et al. Persons with chronic spinal cord injury have decreased natural killer cell and increased tolllike receptor/inflammatory gene expression[J]. J Neurotrauma,2018,35(15):1819-1829.DOI:10.1089/neu.2017.5519.
|
[23] |
He X, Li Y, Deng B, et al. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: mechanisms and therapeutic opportunities[J].Cell Prolif,2022,55(9):e13275.DOI:10.1111/cpr.13275.
|
[24] |
Luan Z, Liu J, Li M, et al. Exosomes derived from umbilical cordmesenchymal stem cells inhibit the NF-kappaB/MAPK signaling pathway and reduce the inflammatory response to promote recovery from spinal cord injury[J]. J Orthop Surg Res, 2024, 19(1):184.DOI:10.1186/s13018-024-04651-w.
|
[25] |
Yates AG, Jogia T, Gillespie ER, et al. Acute IL-1RA treatment suppresses the peripheral and central inflammatory response to spinal cord injury[J]. J Neuroinflammation, 2021, 18(1): 15. DOI:10.1186/s12974-020-02050-6.
|