切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2024, Vol. 10 ›› Issue (06) : 330 -339. doi: 10.3877/cma.j.issn.2095-9141.2024.06.003

脊髓损伤

炎症反应与创伤性脊髓损伤严重程度及神经功能改善的相关性
熊伟1, 杨华1, 肖现1, 黄仁强1, 卢昆1, 王松青1,()   
  1. 1. 524000 广东湛江,解放军南部战区海军第一医院神经外科
  • 收稿日期:2024-04-30 出版日期:2024-12-15
  • 通信作者: 王松青

Correlation of inflammatory response to severity and neurological improvement in traumatic spinal cord injury

Wei Xiong1, Hua Yang1, Xian Xiao1, Renqiang Huang1, Kun Lu1, Songqing Wang1,()   

  1. 1. Department of Neurosurgery,the First Naval Hospital of Southern Theater Command,Zhanjiang 524000,China
  • Received:2024-04-30 Published:2024-12-15
  • Corresponding author: Songqing Wang
引用本文:

熊伟, 杨华, 肖现, 黄仁强, 卢昆, 王松青. 炎症反应与创伤性脊髓损伤严重程度及神经功能改善的相关性[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(06): 330-339.

Wei Xiong, Hua Yang, Xian Xiao, Renqiang Huang, Kun Lu, Songqing Wang. Correlation of inflammatory response to severity and neurological improvement in traumatic spinal cord injury[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2024, 10(06): 330-339.

目的

探讨炎症反应与创伤性脊髓损伤(tSCI)严重程度及神经功能改善的关系。

方法

回顾性分析解放军南部战区海军第一医院神经外科自2020 年1 月至2023 年12 月收治的外伤性脊椎骨折合并脊髓损伤患者的临床资料,评估患者入院时和术后6个月时的AIS 分级,并收集入院时血液相关指标,包括血清白细胞(WBC)、中性粒细胞(NEUT)、中性粒细胞与淋巴细胞比值(NLR)及C 反应蛋白(CRP)等,根据入院时AIS 分级将患者分为A、B、C 和D 级,对比不同分级tSCI患者的炎症指标,并分析炎症指标与术后6个月神经功能改善的相关性。同时,为进一步证明tSCI中炎症反应的重要作用,通过GEO 数据库下载tSCI 相关数据集(GSE226238 和GSE151371),利用GEO2R筛选出差异表达基因(DEGs),并利用Metascape和KOBAS在线分析数据库对DEGs进行GO功能和KEGG 通路富集分析。

结果

AIS A 级患者的血清WBC、NEUT、NLR 及CRP 水平明显高于B 级、C 级及D 级患者,B 级患者的CRP 水平明显高于C 级与D 级患者,差异均有统计学意义(P<0.05)。相关性分析显示,WBC、NEUT 和CRP 与术后6 个月的神经功能改善存在强相关性(Eta2=0.975、0.986、0.968,P<0.05)。从GSE226238 和GSE151371 数据集中筛选出156 个差异共表达基因,其中14个为上调基因,142个为下调基因,基因功能富集和通路富集分析显示,这些基因主要富集在免疫/炎症相关过程中,包括细胞对细胞因子刺激的反应、NEUT 脱颗粒、急性/慢性炎症反应、调节WBC 增殖、免疫细胞的调节、PI3K-AKT 信号通路、细胞因子-细胞因子受体相互作用、Th17 细胞分化等。

结论

炎症反应与tSCI严重程度及神经功能改善密切相关,可能是决定tSCI术后功能改善的关键因素之一。

Objective

To explore the relationship between the inflammatory response and the severity and neurological improvement of traumatic spinal cord injury (tSCI).

Methods

The clinical data of patients with traumatic spinal fractures and spinal cord injuries admitted to Neurosurgery Department of the First Naval Hospital of Southern Theater Command from January 2020 to December 2023 were analyzed. The AIS grading of patients at admission and 6 months after surgery was evaluated, and blood related indicators were collected at admission, including white blood cells (WBC), neutrophils (NEUT),neutrophil to lymphocyte ratio (NLR), and C-reactive protein (CRP). Patients were classified into AIS grades A, B, C, and D according to the AIS grading at admission. The inflammatory indicators of patients with different grades of tSCI were compared, and the correlation between inflammatory indicators and neurological function improvement at 6 months after surgery was analyzed. At the same time, to further demonstrate the important role of inflammation response in tSCI, tSCI related datasets (GSE226238 and GSE151371) were downloaded from GEO database, differentially expressed genes (DEGs) were screened using GEO2R, and GO function and KEGG pathway enrichment analysis were performed on DEGs using Metascape and KOBAS online analysis databases.

Results

The serum levels of WBC,NEUT,NLR,and CRP in AIS grade A patients were significantly higher than those in grade B, C, and D, the CRP level in grade B patients was significantly higher than that in grade C and D patients, and the differences were statistically significant (P<0.05). Correlation analysis showed a strong correlation between WBC, NEUT,and CRP and improvement in neurological function at 6 months postoperatively(Eta2=0.975,0.986,0.968,P<0.05).A total of 156 differentially expressed genes were screened from the GSE226238 and GSE151371 datasets, including 14 upregulated genes and 142 downregulated genes. Gene function enrichment and pathway enrichment analysis showed that these genes were mainly enriched in immune/inflammation related processes, including cell response to cytokine stimulation, NEUT degranulation, acute/chronic inflammation response, regulation of WBC proliferation, regulation of immune cells, PI3K-AKT signaling pathway, cytokine - cytokine receptor interactions, and Th17 cell differentiation, etc..

Conclusion

Inflammatory response is closely related to tSCI severity and neurologic improvement, and may be one of the key factors determining functional improvement after tSCI.

表1 外伤性脊椎骨折合并脊髓损伤患者术后6个月的功能恢复情况[例(%)]
Tab.1 Functional recovery of patients with traumatic spinal fractures and spinal cord injuries at 6 months postoperatively[n(%)]
图1 不同分级tSCI患者炎症指标比较 A:WBC;B:NEUT;C:NLR;D:CRP;与A 级比较,aP<0.05;与B 级比较,bP<0.05;WBC:血清白细胞;NEUT:中性粒细胞;NLR:中性粒细胞与淋巴细胞比值;CRP:C 反应蛋白
Fig.1 Comparison of inflammatory indicators in patients with different grades of tSCI
图2 差异表达基因的筛选 A:GSE226238差异基因火山图;B:GSE151371差异基因火山图;C:上调基因Venn图;D:下调基因Venn图
Fig.2 Screening for differentially expressed genes
图3 差异基因功能富集结果分析 A:上调基因GO富集;B:下调基因GO富集;GO:基因本体
Fig.3 Functional enrichment analysis of differentially expressed genes
图4 差异基因KEGG通路富集分析 A:上调基因KEGG通路;B:下调基因KEGG通路;KEGG:京都基因与基因组百科全书
Fig.4 KEGG pathway enrichment analysis of differentially expressed genes
图5 tSCI恢复期DEGs的鉴定与功能分析 A:tSCI急性期与6个月时的DEGs火山图;B:DEGs GO功能富集分析;C:DEGs KEGG 通路富集分析;tSCI:创伤性脊髓损伤;DEGs:差异表达基因;GO:基因本体;KEGG:京都基因与基因组百科全书
Fig.5 Identification and functional analysis of DEGs during recovery from tSCI
[1]
Hu Y, Li L, Hong B, et al. Epidemiological features of traumatic spinal cord injury in China:a systematic review and meta-analysis[J]. Front Neurol, 2023, 14: 1131791. DOI: 10.3389/fneur.2023.1131791.
[2]
Sterner RC, Brooks NP. Early decompression and short transport time after traumatic spinal cord injury are associated with higher American spinal injury association impairment scale conversion[J]. Spine (Phila Pa 1976), 2022, 47(1): 59-66. DOI: 10.1097/brs.0000000000004121.
[3]
Burke JF, Yue JK, Ngwenya LB, et al. Ultra-early (<12 hours)surgery correlates with higher rate of American spinal injury association impairment scale conversion after cervical spinal cord injury[J]. Neurosurgery, 2019, 85(2): 199-203. DOI: 10.1093/neuros/nyy537.
[4]
Chio JCT, Xu KJ, Popovich P, et al. Neuroimmunological therapies for treating spinal cord injury: evidence and future perspectives[J]. Exp Neurol, 2021, 341: 113704. DOI: 10.1016/j.expneurol.2021.113704.
[5]
Hellenbrand DJ, Quinn CM, Piper ZJ, et al. Inflammation after spinal cord injury: a review of the critical timeline of signaling cues and cellular infiltration[J]. J Neuroinflammation, 2021, 18(1):284.DOI:10.1186/s12974-021-02337-2.
[6]
Sterner RC, Sterner RM. Immune response following traumatic spinal cord injury: pathophysiology and therapies[J]. Front Immunol,2022,13:1084101.DOI:10.3389/fimmu.2022.1084101.
[7]
余鹏飞,麦兴进,符树强,等.血清sTREM-1、IL-12 及IL-33 水平对创伤性脑损伤严重程度和预后评估的价值[J].中华神经创伤外科电子杂志, 2022, 8(1): 18-22. DOI: 10.3877/cma.j.issn.2095-9141.2022.01.004.Yu PF, Mai XJ, Fu SQ, et al. Value of serum levels of sTREM-1,IL-12 and IL-33 in evaluating the severity and prognosis of traumatic brain injury[J]. Chin J Neurotrauma Surg (Electronic Edition), 2022, 8(1): 18-22. DOI: 10.3877/cma.j.issn.2095-9141.2022.01.004.
[8]
Kyritsis N, Torres-Espín A, Schupp PG, et al. Diagnostic blood rna profiles for human acute spinal cord injury[J]. J Exp Med,2021,218(3):e20201795.DOI:10.1084/jem.20201795.
[9]
Morrison D, Pinpin C, Lee A, et al. Profiling immunological phenotypes in individuals during the first year after traumatic spinal cord injury: a longitudinal analysis[J]. J Neurotrauma,2023,40(23-24):2621-2637.DOI:10.1089/neu.2022.0500.
[10]
Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologistoriented resource for the analysis of systems-level datasets[J]. Nat Commun,2019,10(1):1523.DOI:10.1038/s41467-019-09234-6.
[11]
Xie C, Mao X, Huang J, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases[J].Nucleic Acids Res,2011,39(Web Server issue):W316-W322.DOI:10.1093/nar/gkr483.
[12]
Tang D,Chen M,Huang X,et al.SRplot:a free online platform for data visualization and graphing[J]. PLoS One, 2023, 18(11):e0294236.DOI:10.1371/journal.pone.0294236.
[13]
Fehlings MG, Vaccaro A, Wilson JR, et al. Early versus delayed decompression for traumatic cervical spinal cord injury: results of the surgical timing in acute spinal cord injury study (STASCIS)[J].PLoS One,2012,7(2):e32037.DOI:10.1371/journal.pone.0032037.
[14]
Brommer B, Engel O, Kopp MA, et al. Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level[J]. Brain, 2016, 139(Pt 3): 692-707.DOI:10.1093/brain/awv375.
[15]
Yates AG, Anthony DC, Ruitenberg MJ, et al. Systemic immune response to traumatic CNS injuries-are extracellular vesicles the missing link?[J]. Front Immunol, 2019, 10: 2723. DOI: 10.3389/fimmu.2019.02723.
[16]
DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details[J].J Neurochem,2016,139 Suppl 2(Suppl 2):136-153.DOI:10.1111/jnc.13607.
[17]
Ahadi R, Khodagholi F, Daneshi A, et al. Diagnostic value of serum levels of GFAP, pNF-H, and NSE compared with clinical findings in severity assessment of human traumatic spinal cord injury[J]. Spine (Phila Pa 1976), 2015, 40(14): E823-E830. DOI:10.1097/brs.0000000000000654.
[18]
Leister I, Haider T, Mattiassich G, et al. Biomarkers in traumatic spinal cord injury-technical and clinical considerations:a systematic review[J]. Neurorehabil Neural Repair, 2020, 34(2): 95-110. DOI:10.1177/1545968319899920.
[19]
Bloom O, Herman PE, Spungen AM. Systemic inflammation in traumatic spinal cord injury[J]. Exp Neurol, 2020, 325: 113143.DOI:10.1016/j.expneurol.2019.113143.
[20]
McCoy DB, Dupont SM, Gros C, et al. Convolutional neural network-based automated segmentation of the spinal cord and contusion injury: deep learning biomarker correlates of motor impairment in acute spinal cord injury[J]. AJNR Am J Neuroradiol,2019,40(4):737-744.DOI:10.3174/ajnr.A6020.
[21]
Tsolinas RE, Burke JF, DiGiorgio AM, et al. Transforming research and clinical knowledge in spinal cord injury (TRACKSCI): an overview of initial enrollment and demographics[J].Neurosurg Focus, 2020, 48(5): E6. DOI: 10.3171/2020.2.Focus 191030.
[22]
Herman P, Stein A, Gibbs K, et al. Persons with chronic spinal cord injury have decreased natural killer cell and increased tolllike receptor/inflammatory gene expression[J]. J Neurotrauma,2018,35(15):1819-1829.DOI:10.1089/neu.2017.5519.
[23]
He X, Li Y, Deng B, et al. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: mechanisms and therapeutic opportunities[J].Cell Prolif,2022,55(9):e13275.DOI:10.1111/cpr.13275.
[24]
Luan Z, Liu J, Li M, et al. Exosomes derived from umbilical cordmesenchymal stem cells inhibit the NF-kappaB/MAPK signaling pathway and reduce the inflammatory response to promote recovery from spinal cord injury[J]. J Orthop Surg Res, 2024, 19(1):184.DOI:10.1186/s13018-024-04651-w.
[25]
Yates AG, Jogia T, Gillespie ER, et al. Acute IL-1RA treatment suppresses the peripheral and central inflammatory response to spinal cord injury[J]. J Neuroinflammation, 2021, 18(1): 15. DOI:10.1186/s12974-020-02050-6.
[1] 刘炯, 彭乐, 马伟, 江斌. 鞘外解剖肝蒂技术治疗肝内胆管细胞癌的疗效评估[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 373-376.
[2] 王东阳, 林琳, 娄熙彬. SII对局部进展期胃癌nCRT+腹腔镜胃癌根治术后并发症及预后的影响研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(03): 315-318.
[3] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[4] 韩晓, 汤凤莲, 张友文, 吕高超, 姜波, 王利江. 结缔组织相关性间质性肺病血清S1P 水平与疾病严重程度和免疫抑制治疗的关系[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 869-874.
[5] 梁波, 张春雨, 郑永财, 徐冰, 蒋敏娜, 赵学刚, 刘晓敏. 结缔组织疾病相关间质性肺病肺部超声与疾病严重程度的相关性[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 875-881.
[6] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[7] 罗霞, 王宝梅, 李淑景, 杨英. 特发性肺动脉高压血清PCSK9表达及预后意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 585-589.
[8] 程炜炜, 张青, 张诚实, 冯契靓, 陈荣荣, 赵云峰. 全身免疫炎症指数与慢性阻塞性肺疾病急性加重期病情严重程度相关性分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 580-584.
[9] 李刚, 潘晓帆, 田雪, 刘路路. CT灌注成像参数及血栓弹力图对急性前循环脑梗死早期神经功能恶化的预测价值分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 226-232.
[10] 陈雪飞, 卜雄建, 张春良. 神经内镜下经鼻蝶窦扩大鞍底入路颅咽管瘤切除术的疗效分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 160-165.
[11] 潘鑫, 黄晓云, 王超, 顾慧, 唐加波, 王鹏, 崔恒熙, 李政. 院前亚低温结合院内溶栓救治急性脑梗死的效果[J/OL]. 中华卫生应急电子杂志, 2024, 10(03): 145-148.
[12] 李小勇, 郭海志, 赵洋. QSM 联合SWI 预测急性缺血性脑卒中患者EVT 后神经功能的价值[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 549-555.
[13] 王育伟, 杨琼, 丁文华, 邱景景, 耿玉荣. 脑小血管病排尿障碍研究进展及机制探讨[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 606-610.
[14] 吴仔弦, 杨思敏, 周保纯. 定量脑电图在成人重症监护室中的应用[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 616-620.
[15] 唐欣, 翟文海, 王润婷, 周胜宇, 靳航. 补体在缺血性卒中疾病中的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(04): 382-392.
阅读次数
全文


摘要