切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2023, Vol. 09 ›› Issue (04) : 206 -215. doi: 10.3877/cma.j.issn.2095-9141.2023.04.003

临床研究

FSTL1基因在胶质瘤发展中作用的研究
程亚飞, 任长远, 李海马, 孙恺, 马亚群()   
  1. 030001 太原,山西医科大学麻醉学院
    100070 北京市神经外科研究所
    330031 南昌,江西省人民医院神经外科
    610072 成都,电子科技大学附属医院·四川省人民医院神经外科
    100010 北京,解放军总医院第七医学中心麻醉科
  • 收稿日期:2023-02-07 出版日期:2023-08-15
  • 通信作者: 马亚群

Study of the role of the FSTL1 gene in glioma development

Yafei Cheng, Changyuan Ren, Haima Li, Kai Sun, Yaqun Ma()   

  1. College of Anesthesiology, Shanxi Medical University, Taiyuan 030001, China
    Beijing Neurosurgical Institute, Beijing 100070, China
    Department of Neurosurgery, Jiangxi Provincial People's Hospital, Nanchang 330031, China
    Department of Neurosurgery, Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu 610072, China
    Department of Anesthesiology, the 7th Medical Center, PLA General Hospital, Beijing 100010, China
  • Received:2023-02-07 Published:2023-08-15
  • Corresponding author: Yaqun Ma
  • Supported by:
    National Natural Science Foundation Youth Science Foundation Project(82101427)
引用本文:

程亚飞, 任长远, 李海马, 孙恺, 马亚群. FSTL1基因在胶质瘤发展中作用的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 206-215.

Yafei Cheng, Changyuan Ren, Haima Li, Kai Sun, Yaqun Ma. Study of the role of the FSTL1 gene in glioma development[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2023, 09(04): 206-215.

目的

采用生物信息学分析FSTL1基因在胶质瘤发展中的潜在作用。

方法

从中国胶质瘤基因组图谱计划(CGGA)数据库中下载胶质瘤基因表达量及临床数据,按照FSTL1表达水平将胶质瘤患者分为高表达组(FSTL1表达量≥29.1 reads)和低表达组(FSTL1表达量<29.1 reads)。寻找高低组间差异基因进行基因本体论(GO)分析和基因集富集分析(GSEA)。采用最小绝对收缩和选择算法分析构建预后模型,并在胶质瘤纵向分析(GLASS)数据集中进行验证。

结果

FSTL1的高表达与较差的临床特征有关,如:1p19q的非联合缺失、IDH野生型、较高的WHO级别等。低表达组患者的预后均明显优于高表达组患者,差异有统计学意义(P<0.05)。GO分析结果显示,差异基因主要集中在细胞外基质组织、免疫相关、脉管系统发育等。基因富集分析发现的通路主要有:ECM_RECEPTOR_INTERACTION、G2M_CHECKPOINT、L6_JAK_STAT3_SIGNALING、TNFA_SIGNALING_VIA_NFKB等。与低表达组相比,高表达组显示出较高的免疫和基质评分,但纯度评分较低(均P<0.001),构建风险评分的基因有:ALDOCGLC1LINC00634TGIF1TPM4TRAM2。Kaplan-Meier生存曲线显示高风险评分的胶质瘤患者的预后较差。构建生存预测诺模图,受试者工作特征、校正曲线均显示该模型有较好的预测能力。

结论

FSTL1与胶质瘤的临床和分子特征有关,FSTL1的表达量与肿瘤恶性程度有关,是胶质瘤患者的潜在治疗靶点和独立的预后因素。

Objective

Utilizing bioinformatics analysis to investigate the potential role of the FSTL1 gene in the development of gliomas.

Methods

The glioma gene expression levels and clinical data were downloaded from the Chinese Glioma Genome Atlas Project (CGGA) database. Glioma patients were categorized into high expression group (FSTL1 expression level ≥ 29.1 reads) and low expression group (FSTL1 expression level<29.1 reads) based on FSTL1 expression level. Differential gene analysis was conducted between the high and low expression groups, and perform gene ontology (GO) and gene set enrichment analysis (GSEA). The least absolute shrinkage and selection operator (LASSO) algorithm was applied to construct a prognostic model. It was also verified in the Glioma Longitudinal Analysis (GLASS) dataset.

Results

High expression of FSTL1 is associated with poor clinical features, such as non-codelof 1p19q, IDH wildtype, higher grade (WHO Ⅲ-Ⅳ), etc. The prognosis of patients in the low expression group was significantly better than that in the high expression group, and the difference was statistically significant (P<0.05). GO analysis showed that DEGs is mainly concentrated in extracellular matrix tissue, immune-related, vascular system development, etc. The main pathways identified by gene enrichment analysis (GSEA) were: ECM_RECEPTOR_INTERACTION, G2M_CHECKPOINT, L6_JAK_STAT3_SIGNALING, and TNFA_SIGNALING_VIA_NFKB, etc. Compared with the low expression group, the high expression group showed higher immune and matrix scores, but lower purity scores (all P<0.001). Genes used for constructing the risk score were: ALDOC, GLC1, LINC00634, TGIF1, TPM4, and TRAM2. The Kaplan-Meier survival curve showed a poor prognosis of the high-risk score. Construct a survival prediction nomogram, and the subject operating characteristics and the correction curve all showed that the model had a good predictive ability.

Conclusion

FSTL1 is related to the clinical and molecular characteristics of glioma, and its expression is related to the degree of tumor malignancy, being a potential therapeutic target and an independent prognostic factor in glioma patients.

表1 CGGA及GLASS数据集临床信息
Tab.1 Clinical information on CGGA and GLASS datasets
图1 FSTL1表达量高低与患者预后的关系A:CGGA数据集;B:GLASS数据集
Fig.1 Relationship between FSTL1 expression levels and patient prognosis
表2 FSTL1高低表达组患者临床特征比较(CGGA数据集)
Tab.2 Comparison of clinical characteristics between FSTL1 high and low expression groups (CGGA dataset)
表3 FSTL1高低表达组患者临床特征比较(GLASS数据集)
Tab.3 Comparison of clinical characteristics between FSTL1 high and low expression groups (GLASS dataset)
图2 差异基因的分布A~B:CGGA数据集(A:差异基因热图;B:差异基因火山图);C~D:GLASS数据集(C:差异基因热图;D:差异基因火山图)
Fig.2 Distribution of differential genes
图3 差异基因的GO及GSEA分析A,B:差异基因GO分析(A:CGGA数据集;B:GLASS数据集);C,D:差异基因GSEA分析(C:CGGA数据集;D:GLASS数据集)
Fig.3 GO and GSEA of differential genes.
图4 高表达组和低表达组的免疫、基质、纯度评分及CIBERSORT分析结果A~B:免疫、基质及纯度评分分析(A:CGGA数据集;B:GLASS数据集);C~D:CIBERSORT分析(C:CGGA数据集;D:GLASS数据集);与低表达组比较,aP<0.05
Fig.4 Immunological, matrix, purity scores, and CIBERSORT analysis results of the high expression and low expression groups
图5 预后模型的构建A:比例风险模型中调整参数选择的交叉验证;B:候选基因的单变量分析;C~F:CGGA数据集;G~J:GLASS数据集;C,G:风险评分与生存状况的关系;D,H:基于风险评分的Kaplan-Meier生存曲线;E,I:预后模型预测1、3、5年生存率的ROC曲线;F,J:风险评分与临床特征的关系
Fig.5 Construction of prognostic models
表4 CGGA队列临床病理特征的单因素和多因素Cox回归分析
Tab.4 Univariate and multivariate Cox regression analysis of clinical pathological characteristics in CGGA cohort
表5 GLASS队列临床病理特征的单因素和多因素Cox回归分析
Tab.5 Univariate and multivariate Cox regression analysis of clinicalpathological characteristics in GLASS cohort
图6 生存预测诺模图的构建及校准曲线A:CGGA数据集;B:GLASS数据集
Fig.6 Construction and calibration curve of survival prediction nomogram
[1]
Ostrom QT, Gittleman H, Xu J, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009-2013[J]. Neuro Oncol, 2016, 18(suppl_5): v1-v75. DOI: 10.1093/neuonc/now207.
[2]
Lin T, Wang M, Liang HS, et al. The expression of p53, mgmt and egfr in brain glioma and clinical significance[J]. J Biol Regul Homeost Agents, 2015, 29(1): 143-149.
[3]
Leu S, von Felten S, Frank S, et al. IDH/MGMT-driven molecular classification of low-grade glioma is a strong predictor for long-term survival[J]. Neuro Oncol, 2013, 15(4): 469-79. DOI: 10.1093/neuonc/nos317.
[4]
Kreth S, Thon N, Eigenbrod S, et al. O-methylguanine-DNA methyltransferase (MGMT) mRNA expression predicts outcome in malignant glioma independent of MGMT promoter methylation[J]. PLoS One, 2011, 6(2): e17156. DOI: 10.1371/journal.pone.0017156.
[5]
Nicholson JG, Fine HA. Diffuse glioma heterogeneity and its therapeutic implications[J]. Cancer Discov, 2021, 11(3): 575-590. DOI: 10.1158/2159-8290.CD-20-1474.
[6]
Zeng J, Li X, Sander M, et al. Oncolytic viro-immunotherapy: an emerging option in the treatment of gliomas[J]. Front Immunol, 2021, 12: 721830. DOI: 10.3389/fimmu.2021.721830.
[7]
Stupp R, Taillibert S, Kanner A, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial[J]. JAMA, 2017, 318(23): 2306-2316. DOI: 10.1001/jama.2017.18718.
[8]
Mun EJ, Babiker HM, Weinberg U, et al. Tumor-treating fields: a fourth modality in cancer treatment[J]. Clin Cancer Res, 2018, 24(2): 266-275. DOI: 10.1158/1078-0432.CCR-17-1117.
[9]
Reifenberger G, Wirsching HG, Knobbe-Thomsen CB, et al. Advances in the molecular genetics of gliomas - implications for classification and therapy[J]. Nat Rev Clin Oncol, 2017, 14(7): 434-452. DOI: 10.1038/nrclinonc.2016.204.
[10]
Mattiotti A, Prakash S, Barnett P, et al. Follistatin-like 1 in development and human diseases[J]. Cell Mol Life Sci, 2018, 75(13): 2339-2354. DOI: 10.1007/s00018-018-2805-0.
[11]
Horak M, Fairweather D, Kokkonen P, et al. Follistatin-like 1 and its paralogs in heart development and cardiovascular disease[J]. Heart Fail Rev, 2022, 27(6): 2251-2265. DOI: 10.1007/s10741-022-10262-6.
[12]
Rao J, Wang H, Ni M, et al. FSTL1 promotes liver fibrosis by reprogramming macrophage function through modulating the intracellular function of PKM2[J]. Gut, 2022, 71(12): 2539-2550. DOI: 10.1136/gutjnl-2021-325150.
[13]
Wang Q, Yu X, Gong M. Single-cell transcriptome analysis reveals the importance of IRF1/FSTL1 in synovial fibroblast subsets for the development of rheumatoid arthritis[J]. Comput Math Methods Med, 2022, 2022: 1169614. DOI: 10.1155/2022/1169614.
[14]
Ogiwara Y, Nakagawa M, Nakatani F, et al. Blocking FSTL1 boosts NK immunity in treatment of osteosarcoma[J]. Cancer Lett, 2022, 537: 215690. DOI: 10.1016/j.canlet.2022.215690.
[15]
Hu H, Mu Q, Bao Z, et al. Mutational landscape of secondary glioblastoma guides MET-targeted trial in brain tumor[J]. Cell, 2018, 175(6): 1665-1678.e18. DOI: 10.1016/j.cell.2018.09.038.
[16]
Wu F, Wang ZL, Wang KY, et al. Classification of diffuse lower-grade glioma based on immunological profiling[J]. Mol Oncol, 2020, 14(9): 2081-2095. DOI: 10.1002/1878-0261.12707.
[17]
Barthel FP, Johnson KC, Varn FS, et al. Longitudinal molecular trajectories of diffuse glioma in adults[J]. Nature, 2019, 576(7785): 112-120. DOI: 10.1038/s41586-019-1775-1.
[18]
Chan BKC. Data Analysis Using R Programming[J]. Adv Exp Med Biol, 2018, 1082: 47-122. DOI: 10.1007/978-3-319-93791-5_2.
[19]
Yoshihara K, Shahmoradgoli M, Martínez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data[J]. Nat Commun, 2013, 4: 2612. DOI: 10.1038/ncomms3612.
[20]
Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles[J]. Nat Methods, 2015, 12(5): 453-457. DOI: 10.1038/nmeth.3337.
[21]
宋双双,王振光.氨基酸类PET联合MRI在脑胶质瘤诊疗中的应用[J].中华神经医学杂志, 2022, 21(11): 1164-1167. DOI: 10.3760/cma.j.cn115354-20220531-00379.
[22]
Lu L, Ma J, Liu Y, et al. FSTL1-USP10-Notch1 signaling axis protects against cardiac dysfunction through inhibition of myocardial fibrosis in diabetic mice[J]. Front Cell Dev Biol, 2021, 9: 757068. DOI: 10.3389/fcell.2021.757068.
[23]
Xiao X, Zhang H, Ning W, et al. Knockdown of FSTL1 inhibits microglia activation and alleviates depressive-like symptoms through modulating TLR4/MyD88/NF-κB pathway in CUMS mice[J]. Exp Neurol, 2022, 353: 114060. DOI: 10.1016/j.expneurol.2022.114060.
[24]
Kumari E, Xu A, Chen R, et al. FSTL1-knockdown improves neural oscillation via decreasing neuronal-inflammation regulating apoptosis in Aβ1-42 induced AD model mice[J]. Exp Neurol, 2023, 359: 114231. DOI: 10.1016/j.expneurol.2022.114231.
[25]
Rao J, Wang H, Ni M, et al. FSTL1 promotes liver fibrosis by reprogramming macrophage function through modulating the intracellular function of PKM2[J]. Gut, 2022, 71(12): 2539-2550. DOI: 10.1136/gutjnl-2021-325150.
[1] 王晗宇, 张司可, 张羽, 万欣, 贺秋霞, 李明明, 杨秀华. 超声造影在脑胶质瘤切除术术中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 755-760.
[2] 王勇, 黄铁模, 于守君. RPS21在肝细胞癌中的表达及与免疫浸润和预后的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 413-417.
[3] 兰伟途, 武峰, 何建昌, 兰文达, 王万宏. miRNA-199a-5p靶向CDCA7L对胶质瘤细胞迁移及侵袭的影响[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(05): 272-278.
[4] 金美玲, 李艳春, 王佳, 张敏, 李新, 赵素梅, 徐晨. 基于生物信息学的IgA肾病基因富集及免疫细胞浸润分析[J]. 中华肾病研究电子杂志, 2021, 10(04): 205-213.
[5] 王志文, 王长峰, 王海江. 肉桂醛经HIF-1α抑制肿瘤的研究进展及展望[J]. 中华神经创伤外科电子杂志, 2022, 08(04): 247-251.
[6] 余成龙, 刘静, 林帆, 张协军, 阳吉虎, 刘玉飞, 陈垒, 张玛莉, 蒋太鹏, 李维平, 黄国栋, 陈凡帆. 多学科诊疗门诊在神经肿瘤病例中的诊治效率评估[J]. 中华神经创伤外科电子杂志, 2022, 08(04): 229-235.
[7] 袁英淇, 闫润芝, 范益民. ATRX丢失与胶质瘤患者预后及IDH突变相关性的Meta分析[J]. 中华神经创伤外科电子杂志, 2022, 08(03): 161-167.
[8] 麦麦提力·米吉提, 李云雷, 吴昊, 李彦东, 沈宇晟, 吕明月, 朱国华. 弥散张量成像传导束重建技术指导高级别胶质瘤切除的临床研究[J]. 中华神经创伤外科电子杂志, 2022, 08(02): 101-105.
[9] 赵小玉, 李彦东, 吴昊, 范海, 吕明月, 沈宇晟, 盛成俊, 曾加, 吴徐超, 朱国华, 更·党木仁加甫. 外泌体miRNA在脑胶质瘤中的诊断、治疗和预后的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(06): 370-374.
[10] 娜迪热·依明, 崔红, 努尔比亚·牙生, 祖莱娅提·阿不都热依木, 祖丽凯麦尔·阿布拉江, 麦麦提力·米吉提. 胶质瘤的表观遗传学发展[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(05): 309-315.
[11] 向琰, 黄国浩, 杨伟, 刘国龙, 谢源, 吕胜青. 显微镜下黄荧光引导技术切除高级别脑胶质瘤[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(05): 319-320.
[12] 冯海涛, 徐涛, 刘文阳, 孙晨, 曹尚超. 三维动脉自旋标记联合动态对比增强MRI对脑胶质瘤术后复发及放射性脑坏死诊断的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 262-265.
[13] 李燕, 姚毅冰, 毛志远, 于海燕, 刘昕, 樊再雯. NCAPH在肺鳞癌中表达的临床意义及与免疫微环境浸润的关系[J]. 中华临床医师杂志(电子版), 2023, 17(04): 446-454.
[14] 张懿炜, 胡亚欣, 出良钊, 严昭, 曾茜, 蒲茜. CREB3通过下调FAK磷酸化水平抑制胶质瘤细胞增殖及侵袭转移的体外实验研究[J]. 中华临床医师杂志(电子版), 2023, 17(02): 202-209.
[15] 黄贞亮, 赵铎. 针刀治疗胶质瘤术后头痛案[J]. 中华针灸电子杂志, 2022, 11(04): 144-145.
阅读次数
全文


摘要