切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2021, Vol. 07 ›› Issue (04) : 216 -219. doi: 10.3877/cma.j.issn.2095-9141.2021.04.006

颅脑与脊髓损伤

多模态影像学技术在意识障碍诊疗中的应用
刘安民1, 曹宁2, 谢佳芯2, 封亚平2,()   
  1. 1. 650032 昆明,昆明医科大学研究生院
    2. 650032 昆明,联勤保障部队第九二〇医院神经外科
  • 收稿日期:2020-12-29 出版日期:2021-08-11
  • 通信作者: 封亚平

Application of multimodality imaging in the diagnosis and treatment of disorders of consciousness

Anmin Liu1, Ning Cao2, Jiaxin Xie2, Yaping Feng2,()   

  1. 1. Graduate School, Kunming Medical University, Kunming 650032, China
    2. Department of Neurosurgery, The 920 Hospital of Joint Logistics Support Force, Kunming 650032, China
  • Received:2020-12-29 Published:2021-08-11
  • Corresponding author: Yaping Feng
引用本文:

刘安民, 曹宁, 谢佳芯, 封亚平. 多模态影像学技术在意识障碍诊疗中的应用[J]. 中华神经创伤外科电子杂志, 2021, 07(04): 216-219.

Anmin Liu, Ning Cao, Jiaxin Xie, Yaping Feng. Application of multimodality imaging in the diagnosis and treatment of disorders of consciousness[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2021, 07(04): 216-219.

意识障碍(DOC)的评定主要依赖于临床的主观判断以及量表评定方法。近年来,随着多模态影像学技术的发展,临床医生可以从不同的角度对DOC的分级进行更为精确的评定。本文主要就近年来国内外关于多模态影像学技术在DOC诊疗中的研究进展作一综述。

The evaluation of disturbance of consciousness (DOC) mainly depends on clinical subjective judgments and scale evaluation methods. In recent years, with the development of multi-modal imaging technology, clinicians can make more accurate assessments of the classification of DOC from different perspectives. This article summarizes the research progress of multi-modal imaging technology in the diagnosis and treatment of DOC at home and abroad in recent years.

[1]
Siegler JE, Galetta S. Editors’note: incorporating sleep medicine content into medical school through neuroscience core curricula[J]. Neurology, 2019, 93(3): 131-132.
[2]
Kondziella D, Bender A, Diserens K, et al. European academy of neurology guideline on the diagnosis of coma and other disorders of consciousness[J]. Eur J Neurol, 2020, 27(5): 741-756.
[3]
谢秋幼,杨艺,何江弘, 等. 脑损伤后慢性意识障碍研究进展[J]. 实用医学杂志, 2017, 33(8): 155-159.
[4]
Schnakers C, Vanhaudenhuyse A, Giacino J, et al. Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment[J]. BMC Neurol, 2009, 9: 35.
[5]
Bao W, Li X, Luo B. A novel prognostic approach to predict recovery in patients with chronic disorders of consciousness[J]. Neurosci Bull, 2019, 35(5): 953-954.
[6]
吴毅. 重症颅脑损伤后意识障碍的精准康复[J]. 中国康复医学杂志, 2017, 32(3): 249-252.
[7]
张鑫,谢佳芯,封亚平. 多模态影像学技术在脊髓损伤诊疗中的应用[J]. 中华神经创伤外科电子杂志, 2020, 6(5): 312-316.
[8]
Calhoun VD, Sui J. Multimodal fusion of brain imaging data: a key to finding the missing link(s) in complex mental illness[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2016, 1(3): 230-244.
[9]
周晖,吴俊娇,范洁琳. 多模态分子影像技术应用于肿瘤的研究进展[J]. 中国医学影像学杂志, 2011, 19(10): 794-797.
[10]
Glover GH. Overview of functional magnetic resonance imaging[J]. Neurosurg Clin N Am, 2011, 22(2): 133-139, vii.
[11]
赵继宗. 意识障碍临床诊疗的现状与进展[J]. 临床神经外科杂志, 2020, 17(1): 1-3, 7.
[12]
Rudas J, Martínez D, Castellanos G, et al. Time-delay latency of resting-state blood oxygen level-dependent signal related to the level of consciousness in patients with severe consciousness impairment[J]. Brain Connect, 2020, 10(2): 83-94.
[13]
Wutzl B, Leibnitz K, Rattay F, et al. Genetic algorithms for feature selection when classifying severe chronic disorders of consciousness[J]. PLoS One, 2019, 14(7): e0219683.
[14]
Kondziella D, Fisher PM, Larsen VA, et al. Functional MRI for assessment of the default mode network in acute brain injury[J]. Neurocrit Care, 2017, 27(3): 401-406.
[15]
Marino S, Bonanno L, Giorgio A. Functional connectivity in disorders of consciousness: methodological aspects and clinical relevance[J]. Brain Imaging Behav, 2016, 10(2): 604-608.
[16]
Edlow BL, Chatelle C, Spencer CA, et al. Early detection of consciousness in patients with acute severe traumatic brain injury[J]. Brain, 2017, 140(9): 2399-2414.
[17]
Roquet D, Foucher JR, Froehlig P, et al. Resting-state networks distinguish locked-in from vegetative state patients[J]. Neuroimage Clin, 2016, 12: 16-22.
[18]
Tomaiuolo F, Cecchetti L, Gibson RM, et al. Progression from vegetative to minimally conscious state is associated with changes in brain neural response to passive tasks: a longitudinal single-Case functional MRI study[J]. J Int Neuropsychol Soc, 2016, 22(6): 620-630.
[19]
Li D, Jiao YM, Wang L, et al. Surgical outcome of motor deficits and neurological status in brainstem cavernous malformations based on preoperative diffusion tensor imaging: a prospective randomized clinical trial[J]. J Neurosurg, 2018, 130(1): 286-301.
[20]
Irimia A, Van Horn JD. Functional neuroimaging of traumatic brain injury: advances and clinical utility[J]. Neuropsychiatr Dis Treat, 2015, 11: 2355-2365.
[21]
Jang SH, Chang CH, Jung YJ, et al. Relationship between impaired consciousness and injury of ascending reticular activating system in patients with intracerebral hemorrhage[J]. Stroke, 2019, 50(8): 2234-2237.
[22]
Jang SH, Kim OL, Kim SH, et al. The Relation between loss of consciousness, severity of traumatic brain injury, and injury of ascending reticular activating system in patients with traumatic brain injury[J]. Am J Phys Med Rehabil, 2019, 98(12): 1067-1071.
[23]
Wu X, Zhang J, Cui Z, et al. White matter deficits underlying the impaired consciousness level in patients with disorders of consciousness[J]. Neurosci Bull, 2018, 34(4): 668-678.
[24]
Cui Y, Song M, Lipnicki DM, et al. Subdivisions of the posteromedial cortex in disorders of consciousness[J]. Neuroimage Clin, 2018, 20: 260-266.
[25]
Zheng ZS, Reggente N, Lutkenhoff E, et al. Disentangling disorders of consciousness: Insights from diffusion tensor imaging and machine learning[J]. Hum Brain Mapp, 2017, 38(1): 431-443.
[26]
Madsen K, Hesby S, Poulsen I, et al. Comparison of analytical methods of brain [18F]FDG-PET after severe traumatic brain injury[J]. J Neurosci Methods, 2017, 291: 176-181.
[27]
Stender J, Kupers R, Rodell A, et al. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients[J]. J Cereb Blood Flow Metab, 2015, 35(1): 58-65.
[28]
Qin P, Wu X, Duncan NW, et al. GABAA receptor deficits predict recovery in patients with disorders of consciousness: A preliminary multimodal [(11) C]Flumazenil PET and fMRI study[J]. Hum Brain Mapp, 2015, 36(10): 3867-3877.
[29]
Stender J, Mortensen KN, Thibaut A, et al. The minimal energetic requirement of sustained awareness after brain injury[J]. Curr Biol, 2016, 26(11): 1494-1499.
[30]
Kempny AM, James L, Yelden K, et al. Functional near infrared spectroscopy as a probe of brain function in people with prolonged disorders of consciousness[J]. Neuroimage Clin, 2016, 12: 312-319.
[31]
Sun F, Zhou G. Willful modulation of brain activity in disorders of consciousness[J]. N Engl J Med, 2010, 362(20): 1937, author reply 1937-1938.
[32]
赵维. 基于多模态影像数据的脑网络研究[D]. 长沙: 湖南师范大学, 2019.
[1] 张恒, 曲海波. 宫颈癌淋巴结转移的影像学诊断[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(05): 503-509.
[2] 张永明. 颈段脊髓电刺激治疗颅脑损伤后慢性意识障碍的进展[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 129-134.
[3] 李青华, 靳晨彦, 王艳军, 庄禹童, 何江弘, 郭文治. 七氟醚与丙泊酚对慢性意识障碍患者全身麻醉期间脑电的影响[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 12-18.
[4] 党圆圆, 杨艺, 夏小雨, 王勇, 陈雪玲, 何江弘. 脑深部电刺激治疗脑干出血后意识障碍一例报道[J]. 中华神经创伤外科电子杂志, 2022, 08(03): 188-189.
[5] 魏微, 何江弘, 黄勇华, 司娟宁. 脑成像技术在意识障碍患者脑功能评估中的应用[J]. 中华神经创伤外科电子杂志, 2022, 08(02): 117-120.
[6] 麦麦提力·米吉提, 李云雷, 吴昊, 李彦东, 沈宇晟, 吕明月, 朱国华. 弥散张量成像传导束重建技术指导高级别胶质瘤切除的临床研究[J]. 中华神经创伤外科电子杂志, 2022, 08(02): 101-105.
[7] 夏小雨, 王勇, 白洋, 杨艺, 党圆圆, 李小俚, 何江弘. 脊髓电刺激对慢性意识障碍患者脑电成分的调控效应(24例报告)[J]. 中华神经创伤外科电子杂志, 2021, 07(02): 115-120.
[8] 夏晴, 杨艺, 强峻, 曾春, 王勇, 夏小雨, 党圆圆, 路长宇, 李凯, 孔德生, 何江弘, 赵元立, 刘献增. 睡眠脑电成分对慢性意识障碍患者评估及预后预判的研究[J]. 中华神经创伤外科电子杂志, 2020, 06(06): 368-372.
[9] 张鑫, 谢佳芯, 封亚平. 多模态影像学技术在脊髓损伤诊疗中的应用[J]. 中华神经创伤外科电子杂志, 2020, 06(05): 312-316.
[10] 杨新宇, 彭建文, 李辉萍, 陶希, 方翠霓, 宋涛. 脑电非线性分析在卒中后意识障碍的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 185-190.
[11] 惠子欣, 张军. 弥散张量成像对重复经颅磁刺激治疗缺血性脑卒中偏瘫患者的疗效评估[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(04): 204-209.
[12] 张书芬, 柴丽萍, 李勃, 巩庆雷, 王青磊, 陈春莲. 产后精神病患者大脑分数低频振幅的静息态fMRI研究[J]. 中华消化病与影像杂志(电子版), 2022, 12(03): 142-145.
[13] 朱原, 张虹. 应用fMRI探讨吞咽功能神经控制的研究概况[J]. 中华针灸电子杂志, 2021, 10(01): 18-21.
[14] 代雪宁, 孟润祺, 左汉恒, 宋秉春, 张金国. 非典型心尖肥厚型心肌病的诊断学特征[J]. 中华诊断学电子杂志, 2022, 10(04): 243-247.
[15] 黄丽丽, 徐运. 基于失连接理论:关键位置纤维微结构损伤在脑小血管病相关认知功能障碍发病机制中的研究进展[J]. 中华脑血管病杂志(电子版), 2020, 14(06): 327-332.
阅读次数
全文


摘要