[1] |
Bruno S, Oussama K. Springer handbook of robotics (springer handbooks)[M]. 2nd ed. St. Berlin: Springer, 2016: 1-2.
|
[2] |
Rosen J, Hannaford B, Satava RM. Surgical robotics: systems, applications, and visions[M]. Berlin: Springer Verlag, 2010: 723-725.
|
[3] |
Buckingham RA, Buckingham RO. Robots in operating theatres[J]. BMJ, 1995, 311(7018): 1479-1482.
|
[4] |
Nathoo N, Cavuşoğlu MC, Vogelbaum MA, et al. In touch with robotics: neurosurgery for the future[J]. Neurosurgery, 2005, 56(3): 421-433; discussion 421-433.
|
[5] |
Ball T, González-Martínez J, Zemmar A, et al. Robotic applications in cranial neurosurgery: current and future[J]. Oper Neurosurg (Hagerstown), 2021, 21(6): 371-379.
|
[6] |
Gilbert HB, Neimat J, Webster RJ 3rd. Concentric tube robots as steerable needles: achieving follow-the-leader deployment[J]. IEEE Trans Robot, 2015, 31(2): 246-258.
|
[7] |
Comber DB, Pitt EB, Gilbert HB, et al. Optimization of curvilinear needle trajectories for transforamenal hippocampotomy[J]. Oper Neurosurg (Hagerstown), 2017, 13(1): 15-22.
|
[8] |
Bagga V, Bhattacharyya D. Robotics in neurosurgery[J]. Ann R Coll Surg Engl, 2018, 100(6_sup): 19-22.
|
[9] |
Sutherland GR, Lama S, Gan LS, et al. Merging machines with microsurgery: clinical experience with neuroArm[J]. J Neurosurg, 2013, 118(3): 521-529.
|
[10] |
Crinnion W, Jackson B, Sood A, et al. Robotics in neurointerventional surgery: a systematic review of the literature[J]. J Neurointerv Surg, 2021, Online ahead of print.
|
[11] |
Muñoz VF, Garcia-Morales I, Fraile-Marinero JC, et al. Collaborative robotic assistant platform for endonasal surgery: preliminary in-vitro trials[J]. Sensors (Basel), 2021, 21(7): 2320
|
[12] |
Campbell RG, Harvey RJ. How close are we to anterior robotic skull base surgery?[J]. Curr Opin Otolaryngol Head Neck Surg, 2021, 29(1): 44-52.
|
[13] |
Chauvet D, Hans S, Missistrano A, et al. Transoral robotic surgery for sellar tumors: first clinical study[J]. J Neurosurg, 2017, 127(4): 941-948.
|
[14] |
Campbell RG. Robotic surgery of the anterior skull base[J]. Int Forum Allergy Rhinol, 2019, 9(12): 1508-1514.
|
[15] |
Marinho MM, Harada K, Morita A, et al. SmartArm: Integration and validation of a versatile surgical robotic system for constrained workspaces[J]. Int J Med Robot, 2020, 16(2): e2053.
|
[16] |
Gilbert H, Hendrick R, Remirez A, et al. A robot for transnasal surgery featuring needle-sized tentacle-like arms[J]. Expert Rev Med Devices, 2014, 11(1): 5-7.
|
[17] |
Sackier JM, Wang Y. Robotically assisted laparoscopic surgery. From concept to development[J]. Surg Endosc, 1994, 8(1): 63-66.
|
[18] |
Goto T, Hongo K, Ogiwara T, et al. Intelligent surgeon's arm supporting system iarms in microscopic neurosurgery utilizing robotic technology[J]. World Neurosurg, 2018, 119: e661-e665.
|
[19] |
Ogiwara T, Goto T, Nagm A, et al. Endoscopic endonasal transsphenoidal surgery using the iArmS operation support robot: initial experience in 43 patients[J]. Neurosurg Focus, 2017, 42(5): E10.
|
[20] |
Okuda H, Okamoto J, Takumi Y, et al. The iArmS robotic armrest prolongs endoscope lens-wiping intervals in endoscopic sinus surgery[J]. Surg Innov, 2020, 27(5): 515-522.
|
[21] |
Zappa F, Madoglio A, Ferrari M, et al. Hybrid robotics for endoscopic transnasal skull base surgery: single-centre case series[J]. Oper Neurosurg (Hagerstown), 2021, 21(6): 426-435.
|