切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2019, Vol. 05 ›› Issue (04) : 227 -232. doi: 10.3877/cma.j.issn.2095-9141.2019.04.009

所属专题: 文献

基础研究

颅脑创伤动物血清预处理诱导型神经干细胞移植对补体活化的影响
高谋1, 徐如祥2,(), 王文佳3, 董勤4, 丁柏匀2, 姚慧2, 杨志军2   
  1. 1. 100048 北京,解放军总医院第六医学中心神经外科
    2. 100700 北京,解放军总医院第七医学中心附属八一脑科医院
    3. 572013 三亚,解放军总医院海南医院耳鼻咽喉头颈外科
    4. 100038 北京,首都医科大学附属复兴医院神经内科
  • 收稿日期:2019-07-03 出版日期:2019-08-15
  • 通信作者: 徐如祥
  • 基金资助:
    国家自然科学基金面上项目(81671189); 全军"十三五"军事医学创新工程项目(16CXZ001)

Effects of stereotaxic transplantation of induced neural stem cells receiving traumatic brain injury mouse serum pre-treatment on complement activation

Mou Gao1, Ruxiang Xu2,(), Wenjia Wang3, Qin Dong4, Boyun Ding2, Hui Yao2, Zhijun Yang2   

  1. 1. Department of Neurosurgery, The Sixth Medical Center, The PLA General Hospital, Beijing 100048, China
    2. Affiliated Bayi Brain Hospital, The Seventh Medical Center, The PLA General Hospital, Beijing 100700, China
    3. Department of ENT-HN, Hainan Hospital of PLA General Hospital, Sanya 572013, China
    4. Department of Neurology, Fu Xing Hospital, Capital Medical University, Beijing 100038, China
  • Received:2019-07-03 Published:2019-08-15
  • Corresponding author: Ruxiang Xu
  • About author:
    Corresponding author: Xu Ruxiang, Email:
引用本文:

高谋, 徐如祥, 王文佳, 董勤, 丁柏匀, 姚慧, 杨志军. 颅脑创伤动物血清预处理诱导型神经干细胞移植对补体活化的影响[J]. 中华神经创伤外科电子杂志, 2019, 05(04): 227-232.

Mou Gao, Ruxiang Xu, Wenjia Wang, Qin Dong, Boyun Ding, Hui Yao, Zhijun Yang. Effects of stereotaxic transplantation of induced neural stem cells receiving traumatic brain injury mouse serum pre-treatment on complement activation[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2019, 05(04): 227-232.

目的

研究颅脑创伤(TBI)动物血清预处理诱导型神经干细胞(iNSCs)立体定向移植对TBI后补体活化的影响。

方法

采用自由落体脑打击装置制备雄性成年C57BL/6小鼠TBI模型,将48只神经功能缺损评分(NSS)为4~8分的小鼠纳入TBI组,按照随机数字表法选取24只用于制备TBI小鼠血清和热灭活TBI小鼠血清,余下24只按照随机数字表法分为TBI小鼠血清预处理iNSCs(TBI-iNSCs)移植组(6只)、热灭活TBI小鼠血清预处理iNSCs(HITBI-iNSCs)移植组(6只)、磷酸盐缓冲液(PBS)预处理iNSCs(PBS-iNSCs)移植组(6只)和对照(Control)组(6只)。同时设置假手术(Sham)组(6只)。于TBI后12 h,用脑立体定向仪分别将含1×106个TBI-iNSCs、HITBI-iNSCs、PBS-iNSCs单细胞悬液或等体积PBS移植到TBI小鼠脑内。于TBI后14 d处死动物,取脑组织行Western blot检测补体活化产物(C3d和C9)、补体调节因子Crry和细胞凋亡标记物active Caspase-3等蛋白表达水平;取脑组织行免疫荧光染色和原位末端标记(TUNEL)染色,观察TBI-iNSCs、HITBI-iNSCs和PBS-iNSCs移植对TBI小鼠脑内NeuN抗体阳性和TUNEL阳性细胞数量的影响。

结果

Western blot检测示:相比Sham组,PBS-iNSCs组、HITBI-iNSCs组、TBI-iNSCs组和Control组C3d、C9和active Caspase-3表达水平明显增高;而相比Control组,PBS-iNSCs组、HITBI-iNSCs组和TBI-iNSCs组C3d、C9和active Caspase-3表达水平明显降低;相比PBS-iNSCs组和HITBI-iNSCs组,TBI-iNSCs组C3d、C9和active Caspase-3表达水平明显降低,组间差异具有统计学意义(P<0.05)。此外,相比Control组,PBS-iNSCs组、HITBI-iNSCs组、TBI-iNSCs组和Sham组Crry表达水平明显增高;相比Sham组,PBS-iNSCs组、HITBI-iNSCs组和TBI-iNSCs组Crry表达水平明显增高;相比PBS-iNSCs组和HITBI-iNSCs组,TBI-iNSCs组Crry表达水平明显增高,组间差异具有统计学意义(P<0.05)。免疫荧光染色和TUNEL染色示:PBS-iNSCs组和HITBI-iNSCs组NeuN抗体阳性和TUNEL阳性的细胞数量差异无统计学意义;然而,与PBS-iNSCs组和HITBI-iNSCs组相比,TBI-iNSCs组NeuN抗体阳性和TUNEL阳性的细胞数量明显减少,组间差异具有统计学意义(P<0.05)。

结论

TBI小鼠血清预处理iNSCs立体定向移植可上调TBI小鼠脑内Crry水平,抑制补体活化,减轻脑损伤。

Objective

To study the effects of stereotaxic transplantation of induced neural stem cells (iNSCs) receiving traumatic brain injury (TBI) mouse serum pre-treatmenton complement activation following TBI.

Methods

Healthy adult male C57BL/6 mouse TBI models were established using a standardized weight-drop device. Mice having an neurological severity scores (NSS) of 4-8 were enrolled in TBI group (n=48). Twenty-four TBI mice were randomly selected for preparation of TBI mouse serum and heat-inactivated TBI mouse serum, andthe other 24 mice were randomly divided into 4 groups: the TBI-iNSC group (n=6), the HITBI-iNSC group (n=6), the phosphate buffered solution (PBS)-iNSC group (n=6) and the Control group (n=6). Sham-operated mice underwent the same procedures, but not head trauma (n=6). At 12 h after TBI, TBI-iNSCs, HITBI-iNSCs, PBS-iNSCsor PBS were separately injected into the brains of TBI mice via stereotactic method. On day 14 after TBI, animals were sacrificed for molecular-biological andmorphological analysis. We performed western blot to analyze the expression of the C3d, C9, Crry and active Caspase-3 in brain tissues. Next, immunofluorescent stainingand terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining were utilized to determine the effects of TBI-iNSC, HITBI-iNSC and PBS-iNSC grafts on NeuN+ and TUNEL+ cells in the brains of TBI mice.

Results

Western blot analysis revealed that the expression of C3d, C9 and active Caspase-3 in the brains of the Sham group was significantly lower than that in PBS-iNSC, HITBI-iNSC, TBI-iNSC and Control groups (P<0.05). In contrast, the expression of C3d, C9 and active Caspase-3 in the brains of the Control group was significantly higher than that in PBS-iNSC, HITBI-iNSC and TBI-iNSC groups (P<0.05). Moreover, the levels of C3d, C9 and active Caspase-3 in the brain were substantially higher in the PBS-iNSC and HITBI-iNSC groups than in the TBI-iNSC group (P<0.05). Additionally, the expression of Crry in the brain of the Control group was significantly lower than that in the other four groups (P<0.05). Furthermore, the levels of Crry in the brain tissues of mice in the PBS-iNSC and HITBI-iNSC groups were significantly higher than in the Sham group but substantially lower than those in the TBI-iNSC group (P<0.05). Immunofluorescent stainingand TUNEL staining showed that there were no significant differences in the levels of NeuN+/TUNEL+ cells between the PBS-iNSC and HITBI-iNSC groups. However, the levels of NeuN+/TUNEL+ cells in the TBI-iNSC group were markedly lower than that in PBS-iNSC and HITBI-iNSC groups (P<0.05).

Conclusion

Stereotaxic transplantation of iNSC sreceiving TBI mouse serum pre-treatmentcould increase Crry expression, inhibit complement activation and reduce brain damage following TBI.

表1 颅脑创伤14 d后的各组小鼠脑内C3d、C9、Crry和active Caspase-3蛋白的表达水平(±s
图1 3组小鼠颅脑创伤14 d后的脑组织免疫荧光染色和TUNEL染色检测(×400)
[1]
McMillan T, Wilson L, Ponsford J, et al. The Glasgow Outcome Scale-40 years of application and refinement[J]. Nat Rev Neurol, 2016, 12(8): 477-485.
[2]
Carney N, Totten AM, O’Reilly C, et al. Guidelines for the management of severe traumatic brain injury[J]. Neurosurgery, 2017, 80(1): 6-15.
[3]
Kumar A, Loane DJ. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention[J]. Brain Behav Immun, 2012, 26(8): 1191-1201.
[4]
Loane DJ, Faden AI. Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies[J]. Trends Pharmacol Sci, 2010, 31(12): 596-604.
[5]
Simon DW, McGeachy MJ, Bayır H, et al. The far-reaching scope of neuroinflammation after traumatic brain injury[J]. Nat Rev Neurol, 2017, 13(3): 171-191.
[6]
Woodruff TM, Ager RR, Tenner AJ, et al. The role of the complement system and the activation fragment C5a in the central nervous system[J]. Neuromolecular Med, 2010, 12(2): 179-192.
[7]
Finnie JW. Neuroinflammation: beneficial and detrimental effects after traumatic brain injury[J]. Inflammopharmacology, 2013, 21(4): 309-320.
[8]
Holers VM. Complement and its receptors: new insights into human disease[J]. Annu Rev Immunol, 2014, 32(1): 433-459.
[9]
Dooley D, Vidal P, Hendrix S. Immunopharmacological intervention for successful neural stem cell therapy: New perspectives in CNS neurogenesis and repair[J]. Pharmacol Ther, 2014, 141(1): 21-31.
[10]
Fluiter K, Opperhuizen AL, Morgan BP, et al. Inhibition of the membrane attack complex of the complement system reduces secondary neuroaxonal loss and promotes neurologic recovery after traumatic brain injury in mice[J]. J Immunol, 2014, 192(5): 2339-2348.
[11]
Koutsoudaki PN, Papastefanaki F, Stamatakis A, et al. Neural stem/progenitor cells differentiate into oligodendrocytes, reduce inflammation, and ameliorate learning deficits after transplantation in a mouse model of traumatic brain injury[J]. Glia, 2016, 64(5): 763-779.
[12]
Haus DL, López-Velázquez L, Gold EM, et al. Transplantation of human neural stem cells restores cognition in an immunodeficient rodent model of traumatic brain injury[J]. Exp Neurol, 2016, 281: 1-16.
[13]
Bialas AR, Stevens B. TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement[J]. Nat Neurosci, 2013, 16(12): 1773-1782.
[14]
Stephan AH, Barres BA, Stevens B. The complement system: an unexpected role in synaptic pruning during development and disease[J]. Annu Rev Neurosci, 2012, 35(1): 369-389.
[15]
Gao M, Dong Q, Yao H, et al. Systemic administration of induced neural stem cells regulates complement activation in mouse closed head injury models[J]. Sci Rep, 2017, 7: 45989.
[16]
高谋,徐如祥,王文佳,等.诱导型神经干细胞移植抑制颅脑创伤后补体活化的影响[J].中华神经创伤外科电子杂志, 2019, 5(1): 47-53.
[17]
Coulthard LG, Hawksworth OA, Li R, et al. Complement C5aR1 signaling promotes polarization and proliferation of embryonic neural progenitor cells through PKCζ[J]. J Neurosci, 2017, 37(22): 5395-5407.
[18]
Moriyama M, Fukuhara T, Britschgi M, et al. Complement receptor 2 is expressed in neural progenitor cells and regulates adult hippocampal neurogenesis[J]. J Neurosci, 2011, 31(11): 3981-3989.
[19]
Orsini F, De Blasio D, Zangari R, et al. Versatility of the complement system in neuroinflammation, neurodegeneration and brain homeostasis[J]. Front Cell Neurosci, 2014, 8: 380.
[20]
Chu Y, Jin X, Parada I, et al. Enhanced synaptic connectivity and epilepsy in C1q knockout mice[J]. Proc Natl Acad Sci USA, 2010, 107(17): 7975-7980.
[21]
Hammad A, Westacott L, Zaben M. The role of the complement system in traumatic brain injury: a review[J]. J Neuroinflamm, 2018, 15(1): 24.
[1] 程岗. "融合"理念在军队颅脑创伤亚专科人才培养中的意义[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 48-50.
[2] 张华, 刘广明, 刘国成, 张姝红, 陈大莉, 蒲小龙, 王志友, 李倩. 基于决策树法构建创伤性颅脑损伤术后硬脑膜下积液的风险预测模型[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 19-25.
[3] 吴钟华, 龙连圣, 李夏良, 王伟, 施顺孝, 方文杰, 谢虎, 辛志成, 蒋超超, 盛文国, 于晓敏. 颅底探查和重建在急性颅脑损伤开颅术中的意义[J]. 中华神经创伤外科电子杂志, 2021, 07(02): 96-99.
[4] 邹隽风, 黄贤键, 吴楚伟, 苏高健. 中国颅脑创伤流行病学中存在的部分问题探讨[J]. 中华神经创伤外科电子杂志, 2021, 07(01): 59-62.
[5] 王守森, 鲜亮. 静脉循环障碍在颅脑创伤术中急性脑膨出的作用[J]. 中华神经创伤外科电子杂志, 2020, 06(06): 321-324.
[6] 柴慈婧, 涂悦, 张启财, 侯伊玲. 抗tau蛋白抗体基因疗法对慢性颅脑创伤的治疗作用研究[J]. 中华神经创伤外科电子杂志, 2020, 06(05): 292-298.
[7] 张建宁. 颅脑创伤后脑水肿机制的研究进展[J]. 中华神经创伤外科电子杂志, 2020, 06(05): 257-258.
[8] 高国一. 颅脑创伤难治性并发症[J]. 中华神经创伤外科电子杂志, 2020, 06(04): 193-195.
[9] 胡晓芳, 赵琳, 张尚明, 杨德晓, 王守森. 颅内压监测下降阶梯减压技术在创伤后脑疝患者术中的应用[J]. 中华神经创伤外科电子杂志, 2020, 06(04): 254-256.
[10] 路旭, 杨俊丽, 王娜, 周沁晔, 符锋. 慢性创伤性脑病研究进展[J]. 中华神经创伤外科电子杂志, 2020, 06(04): 244-247.
[11] 李在雨, 陈子阳, 关北漩, 侯文仲, 杨经文. 颅脑创伤术后非感染性发热的原因分析与处理[J]. 中华神经创伤外科电子杂志, 2020, 06(04): 241-243.
[12] 李亚斌, 李刚, 王希瑞, 尚金星, 赵志煌. 依达拉奉辅助亚低温对重型颅脑创伤的血清细胞因子及凝血功能的影响[J]. 中华神经创伤外科电子杂志, 2020, 06(03): 166-171.
[13] 刘性强, 王文豪, 白映红, 李存晓, 李斌. 二甲双胍下调水通道蛋白4表达改善大鼠颅脑创伤早期脑水肿的研究[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(04): 221-226.
[14] 朱红玉, 扈玉华, 王洪生. 血栓弹力图在神经外科的临床应用进展[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(01): 57-60.
[15] 黄锦庆, 邹敏刚, 郭鸿华, 吴至武, 黄伟龙, 刘俊, 张柏林, 胡坤, 叶新运, 张震宇, 杨瑞金, 蒋秋华. 脑外伤性与医源性颅内假性动脉瘤的临床特点及其血管内治疗的效果分析(附7例报道)[J]. 中华脑血管病杂志(电子版), 2020, 14(06): 346-351.
阅读次数
全文


摘要