切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2015, Vol. 01 ›› Issue (05) : 37 -40. doi: 10.3877/cma.j.issn.2095-9141.2015.05.010

所属专题: 文献

专题笔谈

Trim32与脊髓损伤
付强1, 徐如祥2,()   
  1. 1. 075000 张家口,解放军第251医院神经外科
    2. 100700 北京,北京军区神经外科研究所
  • 收稿日期:2015-03-27 出版日期:2015-10-15
  • 通信作者: 徐如祥
  • 基金资助:
    军队十二五重大科技项目(BWS12J010)

Trim32 and spinal injury

Qiang Fu1, Ruxiang Xu2,()   

  1. 1. Department of Neurosurgery, 251 Hospital of PLA, Zhangjiakou 075000, China
    2. Institute of Neuroscience of Beijing Military Region, Beijing 100700, China
  • Received:2015-03-27 Published:2015-10-15
  • Corresponding author: Ruxiang Xu
  • About author:
    Corresponding author: Xu Ruxiang, Email:
引用本文:

付强, 徐如祥. Trim32与脊髓损伤[J/OL]. 中华神经创伤外科电子杂志, 2015, 01(05): 37-40.

Qiang Fu, Ruxiang Xu. Trim32 and spinal injury[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2015, 01(05): 37-40.

Trim32是一种转录因子,在神经系统起着促进神经分化和抑制神经增殖和凋亡的作用,尤其是可以调控神经干细胞的增殖与分化,在神经系统中起着重要作用,所以我们预想Trim32会在脊髓损伤的恢复中起到重要作用。本文就脊髓损伤的概述以及Trim32在其恢复中的作用予以综述。

Trim32 is a transcription factor, it can promote neural differentiation, restrain neural proliferation and neural apoptosis. Especially it can regulate proliferation and differentiation of neural stem cell, it play an important role in nervous system. So we expect that Trim32 can be useful in the recover of spinal cord injury, this review summarized the spinal cord injury and the role of Trim32 play in the spinal cord injury.

[1]
Nicaise C, Mitrecic D, Falnikar A, et al. Transplantation of stem cell-derivedastrocytes for the treatment of amyotrophic lateral sclerosis and spinal cord injury[J]. World J Stem Cells, 2015, 7(2): 380-398.
[2]
Kaya R A, Çavusoglu H, Tanlk C, et al. Spinal cord compression caused by a brown tumor at the cervicothoracic junction[J]. Spine J, 2007, 7(6): 728-732.
[3]
Chen H Y, Boore J R P. Living with a spinal cord injury: a grounded theory approach[J]. J ClinNurs, 2008, 17(5A): 116-24.
[4]
Lan C, Lai JS, Chang KH, et al. Traumatic spinal cord injuries in the rural region of Taiwan: an epidemiological study in Hualien county, 1986-1990[J]. Paraplegia, 1993, 31(6): 398-403.
[5]
Chiu WT, Lin HC, Lam C, et al. Review paper: epidemiology of traumatic spinal cord injury: comparisons between developed and developing countries[J]. Asia Pac J Public Health, 2010, 22(1): 9-18.
[6]
Stevens R D, Bhardwaj A, Kirsch J R, et al. Critical care and perioperative management in traumatic spinal cord injury[J]. J NeurosurgAnesthesiol, 2003, 15(3): 215-229.
[7]
Yang NP, Deng CY, Lee YH, et al. The incidence and characterisation of hospitalised acute spinal trauma in Taiwan--a population-based study.[J]. Injury, 2008, 39(4): 443-450.
[8]
Chen HY, Chen SS, Chiu WT, et al. A nationwide epidemiological study of spinal cord injury in geriatric patients in Taiwan[J]. Neuroepidemiology, 1997, 16(5): 241-247.
[9]
Frankel HL, Coll JR, Charlifue SW, et al. Long-term survival in spinal cord injury: a fifty year investigation[J]. Spinal Cord, 1998, 36(4): 266-274.
[10]
Amin A, Bernard J, Nadarajah R, et al. Spinal injuries admitted to a specialist centre over a 5-year period: a study to evaluate delayed admission[J]. Spinal Cord, 2005, 43(7): 434-437.
[11]
Christensen MD, Hulsebosch CE. Chronic central pain after spinal cord injury[J]. J Neurotrauma, 1997, 14(8): 517-537.
[12]
Tator CH. Biology of neurological recovery and functional restoration after spinal cord injury[J]. Neurosurgery, 1998, 42(4): 696-707.
[13]
Tator CH. Experimental and clinical studies of the pathophysiology and management of acute spinal cord injury[J]. J Spinal Cord Med, 1996, 19(4): 206-214.
[14]
Carlson GD, Gorden C. Current developments in spinal cord injury research[J]. Spine J, 2002, 2(2): 116-128.
[15]
Tator CH. Update on the pathophysiology and pathology of acute spinal cord injury[J]. Brain Pathol, 1995, 5(4): 407-413.
[16]
Dong H, Fazzaro A, Xiang C, et al. Enhanced oligodendrocyte survival after spinal cord injury in Bax-deficient mice and mice with delayed Wallerian degeneration[J]. J Neurosci, 2003, 23(25): 8682-8691.
[17]
Faulkner J R, Herrmann JE, Woo MJ, et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury[J]. J Neurosci, 2004, 24(9): 2143-2155.
[18]
Ditor DS, Hamilton S, Tarnopolsky MA, et al. Na+, K+-ATPase concentration and fiber type distribution after spinal cord injury[J]. Muscle Nerve, 2004, 29(1): 38-45.
[19]
Kaptanoglu E, Solaroglu I, Okutan O, et al. Erythropoietin exerts neuroprotection after acute spinal cord injury in rats: effect on lipid peroxidation and early ultrastructural findings[J]. Neurosurg Rev, 2004, 27(2): 113-120.
[20]
Guest J, Eleraky MA, Apostolides PJ, et al. Traumatic central cord syndrome: results of surgical management[J]. J Neurosurg, 2002, 97(1): 25-32.
[21]
Management of acute central cervical spinal cord injuries[J]. Neurosurgery, 2002, 50(3): S166-S172.
[22]
Geisler FH, Coleman WP, Grieco G, et al. Recruitment and early treatment in a multicenter study of acute spinal cord injury[J]. Spine, 2001, 26(24S): S58-S67.
[23]
Geisler FH, Coleman WP, Grieco G, et al. The Sygen multicenter acute spinal cord injury study[J]. Spine, 2001, 26(24S): S87-S98.
[24]
Giger RJ, Venkatesh K, Chivatakarn O, et al. Mechanisms of CNS myelin inhibition: evidence for distinct and neuronal cell type specific receptor systems[J]. RestorNeurolNeurosci, 2008, 26(2-3): 97-115.
[25]
Di Giovanni S. Molecular targets for axon regeneration: focus on the intrinsic pathways[J]. Expert OpinTher Targets, 2009, 13(12): 1387-1398.
[26]
Yiu G, He Z. Glial inhibition of CNS axon regeneration[J]. Nat Rev Neurosci, 2006, 7(8): 617-627.
[27]
Chiang AP, Beck JS, Yen HJ, et al. Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet–Biedl syndrome gene (BBS11)[J]. Proc Natl AcadSci, 2006, 103(16): 6287-6292.
[28]
Kano S, Miyajima N, Fukuda S, et al. Tripartite motif protein 32 facilitates cell growth and migration via degradation of Abl-interactor 2[J]. Cancer Res, 2008, 68(14): 5572-5580.
[29]
Fridell RA, Harding LS, Bogerd HP, et al. Identification of a novel human zinc finger protein that specifically interacts with the activation domain of lentiviral Tat proteins[J]. Virology, 1995, 209(2): 347-357.
[30]
Reymond A, Meroni G, Fantozzi A, et al. The tripartite motif family identifies cell compartments[J]. EMBO J, 2001, 20(9): 2140-2151.
[31]
Kudryashova E, Kudryashov D, Kramerova I, et al. Trim32 is a ubiquitin ligase mutated in limb girdle muscular dystrophy type 2H that binds to skeletal muscle myosin and ubiquitinatesactin[J]. J MolBiol, 2005, 354(2): 413-424.
[32]
Kudryashova E, Wu J, Havton LA, et al. Deficiency of the E3 ubiquitin ligase TRIM32 in mice leads to a myopathy with a neurogenic component[J]. Hum Mol Genet, 2009, 18(7): 1353-1367.
[33]
Locke M, Tinsley CL, Benson MA, et al. TRIM32 is an E3 ubiquitin ligase for dysbindin[J]. Hum Mol Genet, 2009, 18(13): 2344-2358.
[34]
Lee CY, Robinson KJ, Doe CQ. Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation[J]. Nature, 2006, 439(7076): 594-598.
[35]
Knoblich JA. Mechanisms of asymmetric stem cell division[J]. Cell, 2008, 132(4): 583-597.
[36]
Rolls MM, Albertson R, Shih HP, et al. Drosophila aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia[J]. J Cell Biol, 2003, 163(5): 1089-1098.
[37]
Betschinger J, Mechtler K, Knoblich JA. Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells[J]. Cell, 2006, 124(6): 1241-1253.
[38]
Treier M, Staszewski LM, Bohmann D. Ubiquitin-dependent c-Jun degradation in vivo is mediated by the δ domain[J]. Cell, 1994, 78(5): 787-798.
[39]
Yu F, Yao H, Zhu P, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells[J]. Cell, 2007, 131(6): 1109-1123.
[40]
Peng Y, Laser J, Shi G, et al. Antiproliferative effects by Let-7 repression of high-mobility group A2 in uterine leiomyoma[J]. Mol Cancer Res, 2008, 6(4): 663-673.
[41]
Johnson C D, Esquela-Kerscher A, Stefani G, et al. The let-7 microRNA represses cell proliferation pathways in human cells[J]. Cancer Res, 2007, 67(16): 7713-7722.
[42]
Glaser T, Brüstle O. Retinoic acid induction of ES-cell-derived neurons: the radial glia connection[J]. Trends Neurosci, 2005, 28(8): 397-400.
[43]
Weston A D, Blumberg B, Underhill TM. Active repression by unliganded retinoid receptors in development less is sometimes more[J]. J Cell Biol, 2003, 161(2): 223-228.
[44]
Sato T, Okumura F, Kano S, et al. TRIM32 promotes neural differentiation through retinoic acid receptor-mediated transcription[J]. J Cell Sci, 2011, 124(Pt 20): 3492-3502.
[45]
Schwamborn JC, Berezikov E, Knoblich J A. The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors[J]. Cell, 2009, 136(5): 913-925.
[1] 吴杰, 周志强, 符菁, 李喜功, 张钦. 吸入性氢气对大鼠脊髓损伤后自噬及神经功能的影响[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 363-371.
[2] 李璐璐, 马利红, 金佳佳, 谷伟. 干扰素基因刺激因子通过肺巨噬细胞胞葬功能调控急性肺损伤小鼠修复的研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(02): 97-103.
[3] 袁丹, 钟潇, 王明松, 贾康. 脊髓损伤神经源性膀胱患者间歇导尿期间尿路感染病原菌分布及影响因素[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 229-236.
[4] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[5] 张礼刚, 邹志辉, 许顺, 蔡可可, 胡永涛, 梁朝朝. 酒精对慢性非细菌性前列腺炎中T淋巴细胞变化的影响研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 74-81.
[6] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[7] 景水力, 王娟, 刘晔, 周亨, 熊威, 叶青松. 间充质干细胞在脊髓损伤中的应用及研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 113-121.
[8] 薛文, 刘卓, 贾卫华, 张小义, 刘进, 王爱国, 冯志刚, 杨鑫, 田祺, 段虎斌. 大鼠脊髓损伤后降钙素基因相关肽及神经元钙超载的变化及相关性分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 198-205.
[9] 李景德, 张保艳, 卢培刚, 李博. 法舒地尔对大鼠急性脊髓损伤后神经细胞凋亡和BCL-2蛋白表达水平的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 65-70.
[10] 陈业煌, 陈恺钦, 薛亮, 吴箭午, 黄预备, 魏梁锋, 曾炳香, 王守森. 改良大鼠挫伤型脊髓损伤模型的制备与评估[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(06): 325-332.
[11] 郭莉丽, 高谋, 徐如祥. 脊髓损伤的治疗新进展[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(06): 321-324.
[12] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[13] 于同, 矫健航, 姜炜博, 王中汉, 王洋, 伍旭辉, 吴敏飞. 体位复位与椎板切除减压内固定术治疗胸腰段爆裂性骨折的对比性研究[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 331-339.
[14] 蒋心怡, 顾丹丹, 叶艳, 缪佳蓉. RNA测序研究抗菌肽KT2治疗溃疡性结肠炎的作用机制[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(01): 8-15.
[15] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J/OL]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?