切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2015, Vol. 01 ›› Issue (05) : 37 -40. doi: 10.3877/cma.j.issn.2095-9141.2015.05.010

所属专题: 文献

专题笔谈

Trim32与脊髓损伤
付强1, 徐如祥2,()   
  1. 1. 075000 张家口,解放军第251医院神经外科
    2. 100700 北京,北京军区神经外科研究所
  • 收稿日期:2015-03-27 出版日期:2015-10-15
  • 通信作者: 徐如祥
  • 基金资助:
    军队十二五重大科技项目(BWS12J010)

Trim32 and spinal injury

Qiang Fu1, Ruxiang Xu2,()   

  1. 1. Department of Neurosurgery, 251 Hospital of PLA, Zhangjiakou 075000, China
    2. Institute of Neuroscience of Beijing Military Region, Beijing 100700, China
  • Received:2015-03-27 Published:2015-10-15
  • Corresponding author: Ruxiang Xu
  • About author:
    Corresponding author: Xu Ruxiang, Email:
引用本文:

付强, 徐如祥. Trim32与脊髓损伤[J]. 中华神经创伤外科电子杂志, 2015, 01(05): 37-40.

Qiang Fu, Ruxiang Xu. Trim32 and spinal injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2015, 01(05): 37-40.

Trim32是一种转录因子,在神经系统起着促进神经分化和抑制神经增殖和凋亡的作用,尤其是可以调控神经干细胞的增殖与分化,在神经系统中起着重要作用,所以我们预想Trim32会在脊髓损伤的恢复中起到重要作用。本文就脊髓损伤的概述以及Trim32在其恢复中的作用予以综述。

Trim32 is a transcription factor, it can promote neural differentiation, restrain neural proliferation and neural apoptosis. Especially it can regulate proliferation and differentiation of neural stem cell, it play an important role in nervous system. So we expect that Trim32 can be useful in the recover of spinal cord injury, this review summarized the spinal cord injury and the role of Trim32 play in the spinal cord injury.

[1]
Nicaise C, Mitrecic D, Falnikar A, et al. Transplantation of stem cell-derivedastrocytes for the treatment of amyotrophic lateral sclerosis and spinal cord injury[J]. World J Stem Cells, 2015, 7(2): 380-398.
[2]
Kaya R A, Çavusoglu H, Tanlk C, et al. Spinal cord compression caused by a brown tumor at the cervicothoracic junction[J]. Spine J, 2007, 7(6): 728-732.
[3]
Chen H Y, Boore J R P. Living with a spinal cord injury: a grounded theory approach[J]. J ClinNurs, 2008, 17(5A): 116-24.
[4]
Lan C, Lai JS, Chang KH, et al. Traumatic spinal cord injuries in the rural region of Taiwan: an epidemiological study in Hualien county, 1986-1990[J]. Paraplegia, 1993, 31(6): 398-403.
[5]
Chiu WT, Lin HC, Lam C, et al. Review paper: epidemiology of traumatic spinal cord injury: comparisons between developed and developing countries[J]. Asia Pac J Public Health, 2010, 22(1): 9-18.
[6]
Stevens R D, Bhardwaj A, Kirsch J R, et al. Critical care and perioperative management in traumatic spinal cord injury[J]. J NeurosurgAnesthesiol, 2003, 15(3): 215-229.
[7]
Yang NP, Deng CY, Lee YH, et al. The incidence and characterisation of hospitalised acute spinal trauma in Taiwan--a population-based study.[J]. Injury, 2008, 39(4): 443-450.
[8]
Chen HY, Chen SS, Chiu WT, et al. A nationwide epidemiological study of spinal cord injury in geriatric patients in Taiwan[J]. Neuroepidemiology, 1997, 16(5): 241-247.
[9]
Frankel HL, Coll JR, Charlifue SW, et al. Long-term survival in spinal cord injury: a fifty year investigation[J]. Spinal Cord, 1998, 36(4): 266-274.
[10]
Amin A, Bernard J, Nadarajah R, et al. Spinal injuries admitted to a specialist centre over a 5-year period: a study to evaluate delayed admission[J]. Spinal Cord, 2005, 43(7): 434-437.
[11]
Christensen MD, Hulsebosch CE. Chronic central pain after spinal cord injury[J]. J Neurotrauma, 1997, 14(8): 517-537.
[12]
Tator CH. Biology of neurological recovery and functional restoration after spinal cord injury[J]. Neurosurgery, 1998, 42(4): 696-707.
[13]
Tator CH. Experimental and clinical studies of the pathophysiology and management of acute spinal cord injury[J]. J Spinal Cord Med, 1996, 19(4): 206-214.
[14]
Carlson GD, Gorden C. Current developments in spinal cord injury research[J]. Spine J, 2002, 2(2): 116-128.
[15]
Tator CH. Update on the pathophysiology and pathology of acute spinal cord injury[J]. Brain Pathol, 1995, 5(4): 407-413.
[16]
Dong H, Fazzaro A, Xiang C, et al. Enhanced oligodendrocyte survival after spinal cord injury in Bax-deficient mice and mice with delayed Wallerian degeneration[J]. J Neurosci, 2003, 23(25): 8682-8691.
[17]
Faulkner J R, Herrmann JE, Woo MJ, et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury[J]. J Neurosci, 2004, 24(9): 2143-2155.
[18]
Ditor DS, Hamilton S, Tarnopolsky MA, et al. Na+, K+-ATPase concentration and fiber type distribution after spinal cord injury[J]. Muscle Nerve, 2004, 29(1): 38-45.
[19]
Kaptanoglu E, Solaroglu I, Okutan O, et al. Erythropoietin exerts neuroprotection after acute spinal cord injury in rats: effect on lipid peroxidation and early ultrastructural findings[J]. Neurosurg Rev, 2004, 27(2): 113-120.
[20]
Guest J, Eleraky MA, Apostolides PJ, et al. Traumatic central cord syndrome: results of surgical management[J]. J Neurosurg, 2002, 97(1): 25-32.
[21]
Management of acute central cervical spinal cord injuries[J]. Neurosurgery, 2002, 50(3): S166-S172.
[22]
Geisler FH, Coleman WP, Grieco G, et al. Recruitment and early treatment in a multicenter study of acute spinal cord injury[J]. Spine, 2001, 26(24S): S58-S67.
[23]
Geisler FH, Coleman WP, Grieco G, et al. The Sygen multicenter acute spinal cord injury study[J]. Spine, 2001, 26(24S): S87-S98.
[24]
Giger RJ, Venkatesh K, Chivatakarn O, et al. Mechanisms of CNS myelin inhibition: evidence for distinct and neuronal cell type specific receptor systems[J]. RestorNeurolNeurosci, 2008, 26(2-3): 97-115.
[25]
Di Giovanni S. Molecular targets for axon regeneration: focus on the intrinsic pathways[J]. Expert OpinTher Targets, 2009, 13(12): 1387-1398.
[26]
Yiu G, He Z. Glial inhibition of CNS axon regeneration[J]. Nat Rev Neurosci, 2006, 7(8): 617-627.
[27]
Chiang AP, Beck JS, Yen HJ, et al. Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet–Biedl syndrome gene (BBS11)[J]. Proc Natl AcadSci, 2006, 103(16): 6287-6292.
[28]
Kano S, Miyajima N, Fukuda S, et al. Tripartite motif protein 32 facilitates cell growth and migration via degradation of Abl-interactor 2[J]. Cancer Res, 2008, 68(14): 5572-5580.
[29]
Fridell RA, Harding LS, Bogerd HP, et al. Identification of a novel human zinc finger protein that specifically interacts with the activation domain of lentiviral Tat proteins[J]. Virology, 1995, 209(2): 347-357.
[30]
Reymond A, Meroni G, Fantozzi A, et al. The tripartite motif family identifies cell compartments[J]. EMBO J, 2001, 20(9): 2140-2151.
[31]
Kudryashova E, Kudryashov D, Kramerova I, et al. Trim32 is a ubiquitin ligase mutated in limb girdle muscular dystrophy type 2H that binds to skeletal muscle myosin and ubiquitinatesactin[J]. J MolBiol, 2005, 354(2): 413-424.
[32]
Kudryashova E, Wu J, Havton LA, et al. Deficiency of the E3 ubiquitin ligase TRIM32 in mice leads to a myopathy with a neurogenic component[J]. Hum Mol Genet, 2009, 18(7): 1353-1367.
[33]
Locke M, Tinsley CL, Benson MA, et al. TRIM32 is an E3 ubiquitin ligase for dysbindin[J]. Hum Mol Genet, 2009, 18(13): 2344-2358.
[34]
Lee CY, Robinson KJ, Doe CQ. Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation[J]. Nature, 2006, 439(7076): 594-598.
[35]
Knoblich JA. Mechanisms of asymmetric stem cell division[J]. Cell, 2008, 132(4): 583-597.
[36]
Rolls MM, Albertson R, Shih HP, et al. Drosophila aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia[J]. J Cell Biol, 2003, 163(5): 1089-1098.
[37]
Betschinger J, Mechtler K, Knoblich JA. Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells[J]. Cell, 2006, 124(6): 1241-1253.
[38]
Treier M, Staszewski LM, Bohmann D. Ubiquitin-dependent c-Jun degradation in vivo is mediated by the δ domain[J]. Cell, 1994, 78(5): 787-798.
[39]
Yu F, Yao H, Zhu P, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells[J]. Cell, 2007, 131(6): 1109-1123.
[40]
Peng Y, Laser J, Shi G, et al. Antiproliferative effects by Let-7 repression of high-mobility group A2 in uterine leiomyoma[J]. Mol Cancer Res, 2008, 6(4): 663-673.
[41]
Johnson C D, Esquela-Kerscher A, Stefani G, et al. The let-7 microRNA represses cell proliferation pathways in human cells[J]. Cancer Res, 2007, 67(16): 7713-7722.
[42]
Glaser T, Brüstle O. Retinoic acid induction of ES-cell-derived neurons: the radial glia connection[J]. Trends Neurosci, 2005, 28(8): 397-400.
[43]
Weston A D, Blumberg B, Underhill TM. Active repression by unliganded retinoid receptors in development less is sometimes more[J]. J Cell Biol, 2003, 161(2): 223-228.
[44]
Sato T, Okumura F, Kano S, et al. TRIM32 promotes neural differentiation through retinoic acid receptor-mediated transcription[J]. J Cell Sci, 2011, 124(Pt 20): 3492-3502.
[45]
Schwamborn JC, Berezikov E, Knoblich J A. The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors[J]. Cell, 2009, 136(5): 913-925.
[1] 周伟, 蔡恒, 范海迪, 李惠中, 王传霞, 顾茂胜. cblC型甲基丙二酸血症MMACHC基因新突变对小鼠神经细胞凋亡及Wnt/β-catenin信号通路的作用机制[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 528-539.
[2] 刘甜甜, 李明, 朱含汀, 倪涛, 彭银波, 方勇. 创缘铁过载的临床样本验证与铁过载对小鼠创面愈合的影响[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 475-481.
[3] 曹叙勇, 刘耀升. 脊柱转移瘤手术并发症研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 435-439.
[4] 张星哲, 郑秉暄, 邓格, 豆猛, 石玉婷, 卫田, 郭映聪, 韩锋, 赵艳龙, 丁晨光, 田普训. 髓源性抑制细胞通过抑制炎症反应减轻小鼠肾脏缺血再灌注损伤[J]. 中华移植杂志(电子版), 2023, 17(01): 42-46.
[5] 王楠楠, 刘文红, 孙立, 王婧. 脊髓损伤并发腹股沟嵌顿疝29例围手术期护理体会[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 473-476.
[6] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[7] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[8] 白静怡, 黄轩, 张益权, 田颖, 陶勇. 小鼠干眼模型构建及其角膜特征检测的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 12-17.
[9] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[10] 姚尧, 杨新明, 杜雅坤, 朱宁, 阴彦林, 贾永利, 张瑛, 张培楠, 田野, 陈丽星. 雷公藤甲素与甲泼尼龙调节细胞自噬和凋亡促进脊髓损伤修复的比较研究[J]. 中华神经创伤外科电子杂志, 2022, 08(03): 132-140.
[11] 李俸鑫, 许建文, 陈如玉, 李常秋, 王继羚, 谭秀伟, 卜海峰, 王海霖, 苏义基. 2015至2020年广西医科大学第一附属医院老年脊髓损伤的特征分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(01): 45-50.
[12] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[13] 梁伟, 王晓彬, 洪笑阳, 蔡明岳, 梁礼聪, 陈烨, 黄培凯, 刘铭宇, 林立腾, 朱康顺. 原位肝癌小鼠微波消融术后复发模型的构建[J]. 中华介入放射学电子杂志, 2023, 11(02): 133-139.
[14] 买买提·依斯热依力, 王永康, 吾布力卡斯木·吾拉木, 阿巴伯克力·乌斯曼, 克力木·阿不都热依木. 基于16s rRNA测序分析心理应激小鼠肠道菌群结构特征[J]. 中华胃食管反流病电子杂志, 2022, 09(04): 181-186.
[15] 买买提·依斯热依力, 王永康, 阿巴伯克力·乌斯曼, 克力木·阿不都热依木. 基于16s rRNA测序分析小鼠高脂饮食诱导肥胖的肠道菌群结构特征[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 12-16.
阅读次数
全文


摘要