切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2025, Vol. 11 ›› Issue (01) : 17 -25. doi: 10.3877/cma.j.issn.2095-9141.2025.01.003

基础研究

定量蛋白质组学分析皮质酮对急性创伤性脑损伤的神经保护作用
吕一帆1, 张斌2, 茆翔3, 刘佰运1, 高国一1, 牛非1,()   
  1. 1. 100070 北京市神经外科研究所中枢神经系统损伤研究北京市重点实验室和首都医科大学附属北京天坛医院神经外科
    2. 100070 北京,首都医科大学附属北京天坛医院重症医学科
    3. 230022 合肥,安徽医科大学第一附属医院神经外科
  • 收稿日期:2024-08-16 出版日期:2025-02-15
  • 通信作者: 牛非
  • 基金资助:
    国家自然科学基金(81771327)北京市卫生健康委员会2022年预算项目(11000022T000000423832)北京市神经外科研究所科研培育基金

Protein profiling indentified neuroprotection effect after corticosterone intervention in rats with traumatic brain injury

Yifan Lyu1, Bin Zhang2, Xiang Mao3, Baiyun Liu1, Guoyi Gao1, Fei Niu1,()   

  1. 1. Key Laboratory of Central Nervous System Injury,Beijing Neurosurgical Institute,and Neurosurgery Center,Beijing Tiantan Hospital,Capital Medical University,Beijing 100070,China
    2. Department of Critical Care Medicine,Beijing Tiantan Hospital,Capital Medical University,Beijing 100070,China
    3. Department of Neurosurgery,the First Affiliated Hospital of Anhui Medical University,Hefei 230022,China
  • Received:2024-08-16 Published:2025-02-15
  • Corresponding author: Fei Niu
引用本文:

吕一帆, 张斌, 茆翔, 刘佰运, 高国一, 牛非. 定量蛋白质组学分析皮质酮对急性创伤性脑损伤的神经保护作用[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(01): 17-25.

Yifan Lyu, Bin Zhang, Xiang Mao, Baiyun Liu, Guoyi Gao, Fei Niu. Protein profiling indentified neuroprotection effect after corticosterone intervention in rats with traumatic brain injury[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2025, 11(01): 17-25.

目的

通过定量蛋白质组学探讨皮质酮(CORT)对急性创伤性脑损伤(TBI)的神经保护作用。

方法

选取15只SD雄性大鼠,随机分为假手术组、TBI模型组和CORT治疗组,每组5只。使用控制性皮质撞击(CCI)建立大鼠TBI模型(TBI模型组),假手术组与TBI模型组操作步骤相同,仅不打击皮质;CORT治疗组在打击后1 h内腹腔注射CORT(0.3 mg/kg),给药1次/d,连续给药2 d。TBI 48 h后,通过超高效液相色谱和同位素标记相对与绝对定量(iTRAQ)蛋白质质谱分析TBI模型组和CORT治疗组大鼠海马组织之间的差异蛋白。采用OmicStudio工具、基因本体(GO)数据库、通路分析软件(IPA)、Cytoscape软件分别就差异蛋白表达情况的火山图、细胞组分、生物进程、分子功能、经典富集通路以及蛋白质之间的相互作用进行绘制和分析。

结果

蛋白质质谱数据显示,共鉴定出3134种蛋白质,其中CORT治疗组和TBI模型组有71种差异表达的蛋白质。火山图结果显示,与TBI模型组相比,CORT治疗组上调的差异蛋白有28种[差异倍数(FC)≥1.5],下调的差异蛋白有32种(FC≤0.65)。生物信息学分析(GO和IPA富集经典通路)结果显示,富集的经典通路包括肝脏X受体(LXR)/类视黄醇X受体(RXR)激活通路[-log10P值)=6.96]、法尼醇X受体(FXR)/RXR激活通路[-log10P值)=6.84],急性期反应信号通路[-log10P值)=5.81]等。差异蛋白质之间相互作用节点排在前5位的蛋白质包括α-1-抗蛋白酶、血清转铁蛋白、血纤维蛋白溶酶原、补体C3、细胞色素C等。

结论

CORT对TBI神经保护作用的机制可能涉及调节凝血障碍、促进铁稳态平衡、减少脂质过氧化、对急性期的反应以及抗凋亡等作用。

Objective

To explore the neuroprotective effect of corticosterone (CORT) on acute traumatic brain injury (TBI) through quantitative proteomics.

Methods

Fifteen male Sprague-Dawley(SD) rats were selected and randomly divided into a sham operation group,a TBI model group,and a CORT treatment group,with 5 rats in each group. A rat TBI model was established using controlled cortical impact (CCI). The operation steps of the sham operation group were the same as those of the TBI model group,except that the cortex was not impacted. The CORT treatment group was intraperitoneally injected with CORT (0.3 mg/kg) within 1 h after impact,once a day for 2 consecutive days. At 48 h after TBI,ultra-high performance liquid chromatography and isobaric tags for relative and absolute quantitation(iTRAQ) protein mass spectrometry were used to analyze the differential proteins in the hippocampal tissues between the TBI model group and the CORT treatment group. OmicStudio tools,the Gene Ontology (GO) database,Ingenuity Pathway Analysis (IPA) software,and Cytoscape software were used to plot and analyze the volcano plot of differential protein expression,cellular components,biological processes and molecular functions,canonical enrichment pathways,and the interactions between proteins,respectively.

Results

The results of protein mass spectrometry data showed that a total of 3134 proteins were identified,and there were 71 differentially expressed proteins between the CORT treatment group and the TBI model group. The results of the volcano plot showed that,compared with the TBI model group,there were 28 up-regulated differential proteins [fold change (FC)≥1.5) and 32 down-regulated differential proteins (FC≤0.65) in the CORT treatment group. The results of bioinformatics analysis (GO and IPA enrichment of canonical pathways) showed that the enriched canonical pathways included liver X receptor/retinoid X receptor (RXR) activation [-log10P)=6.96],farnesoid X receptor/RXR activation [-log10P)=6.84],acute phase response signaling pathway [-log10P)=5.81],etc.. The top 5 proteins in the interaction nodes among the differential proteins included α-1-antichymotrypsin,serum transferrin,plasminogen,complement C3,cytochrome C,etc..

Conclusion

The mechanism of the neuroprotective effect of CORT on TBI may involve regulating coagulation disorders,promoting iron homeostasis,reducing lipid peroxidation,the response to the acute phase,and anti-apoptosis.

图1 各组大鼠TBI 48 h的脑组织图片 A:假手术组;B:TBI模型组;C:CORT治疗组;TBI:创伤性脑损伤;CORT:皮质酮
Fig.1 Pictures of brain tissue in rats with brain injury at 48 h in each group
表1 CORT治疗组和TBI模型组间具有倍数变化的差异表达蛋白
Tab.1 Differentially expressed proteins with fold changes between CORT treatment group and TBI model group
编号 蛋白名称 基因名 CORT/TBI(差异倍数≤0.65与≥1.5) P
P54311 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 Gnb1 0.046 0.007
P24090 Alpha-2-HS-glycoprotein Ahsg 0.063 0.042
P68255 14-3-3 protein theta Ywhaq 0.104 0.003
P62747 Rho-related GTP-binding protein RhoB Rhob 0.119 0.009
P00787 Cathepsin B Ctsb 0.134 0.014
P09606 Glutamine synthetase Glul 0.143 0.022
Q01177 Plasminogen Plg 0.167 0.001
Q05962 ADP/ATP translocase 1 Slc25a4 0.167 0.034
P12346 Serotransferrin Tf 0.185 <0.001
P62898 Cytochrome c, somatic Cycs 0.192 0.007
P29117 Peptidyl-prolyl cis-trans isomerase F, mitochondrial Ppif 0.207 0.022
P46101 Dipeptidyl aminopeptidase-like protein 6 Dpp6 0.286 <0.001
B0BNE5 S-formylglutathione hydrolase Esd 0.288 0.019
P20059 Hemopexin Hpx 0.302 0.016
Q8CFN2 Cell division control protein 42 homolog Cdc42 0.331 0.040
P04276 Vitamin D-binding protein Gc 0.350 <0.001
P01946 Hemoglobin subunit alpha-1/2 Hba1 0.363 <0.001
Q6P6R2 Dihydrolipoyl dehydrogenase, mitochondrial Dld 0.373 0.005
P18266 Glycogen synthase kinase-3 beta Gsk3b 0.413 0.012
P07150 Annexin A1 Anxa1 0.425 0.001
P01026 Complement C3 C3 0.440 <0.001
Q9QYF3 Unconventional myin-Va Myo5a 0.466 0.003
Q8CHM7 2-hydroxyacyl-CoA lyase 1 Hacl1 0.492 0.026
P63102 14-3-3 protein zeta/delta Ywhaz 0.496 0.037
Q6UPE1 Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial Etfdh 0.515 0.001
P06687 Sodium/potassium-transporting ATPase subunit alpha-3 Atp1a3 0.540 0.019
P04636 Malate dehydrogenase, mitochondrial Mdh2 0.550 0.013
Q08602 Geranylgeranyl transferase type-2 subunit alpha Rabggta 0.570 0.012
P17475 Alpha-1-antiproteinase Serpina1 0.586 0.010
Q62915 REVERSED Peripheral plasma membrane protein CASK Cask 0.586 0.042
Q63041 Alpha-1-macroglobulin A1m 0.614 0.020
O35180 Endophilin-A3 Sh3gl3 0.631 0.032
P34926 Microtubule-associated protein 1A Map1a 1.514 0.033
Q62824 Exocyst complex component 4 Exoc4 1.514 0.036
P61265 Syntaxin-1B Stx1b 1.514 0.037
O55166 Vacuolar protein sorting-associated protein 52 homolog Vps52 1.556 0.028
P09527 Ras-related protein Rab-7a Rab7a 1.629 0.032
P07335 Creatine kinase B-type Ckb 1.675 0.043
A1L1I3 Numb-like protein Numbl 1.706 0.016
O35550 Rab GTPase-binding effector protein 1 Rabep1 1.706 0.044
P29457 Serpin H1 Serpinh1 1.738 0.028
P35281 Ras-related protein Rab-10 Rab10 1.754 0.045
Q63560 Microtubule-associated protein 6 Map6 1.770 0.004
Q5U300 Ubiquitin-like modifier-activating enzyme 1 Uba1 1.770 0.020
P10888 Cytochrome c oxidase subunit 4 isoform 1, mitochondrial Cox4i1 1.836 0.034
Q924S5 Lon protease homolog, mitochondrial Lonp1 1.888 0.047
P11915 Non-specific lipid-transfer protein Scp2 1.959 0.016
Q9ERH3 WD repeat-containing protein 7 Wdr7 1.995 0.009
P16086 Spectrin alpha chain, non-erythrocytic 1 Sptan1 2.032 <0.001
Q62936 Disks large homolog 3 Dlg3 2.051 0.005
Q9QWN8 Spectrin beta chain, non-erythrocytic 2 Sptbn2 2.089 0.003
P11507 Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 Atp2a2 2.228 0.035
Q60587 Trifunctional enzyme subunit beta, mitochondrial Hadhb 2.333 0.009
P60881 Synaptomal-associated protein 25 Snap25 2.399 0.045
P18886 Carnitine O-palmitoyltransferase 2, mitochondrial Cpt2 2.443 0.007
Q04400 Adenylate cyclase type 5 Adcy5 2.729 0.009
Q80WF4 Transmembrane protein 132A Tmem132a 2.780 0.007
Q6IFW6 Keratin, type I cytkeletal 10 Krt10 2.884 0.015
O08719 Ena/VASP-like protein Evl 2.992 0.040
Q5EGZ1 Angiotensin-converting enzyme 2 Ace2 6.138 0.037
图2 CORT治疗组与TBI模型组间差异蛋白表达情况的火山图 蓝色代表下调的差异蛋白(FC≤0.65),红色代表上调的差异蛋白(FC≥1.5),灰色代表FC>0.65且<1.5的差异蛋白;TBI:创伤性脑损伤;CORT:皮质酮;FC:差异倍数
Fig.2 Volcano diagram of differential protein expression between CORT treatment group and TBI model group
图3 CORT治疗组与TBI模型组间差异表达蛋白的基因本体功能分类
Fig.3 Gene functional classification of differentially expressed proteins between CORT treatment group and TBI model group
图4 CORT治疗组与TBI模型组差异蛋白的通路富集分析结果
Fig.4 Pathway enrichment analysis of differentially expressed proteins between CORT treatment group and TBI model group
图5 CORT治疗组与TBI模型组间前10节点蛋白的蛋白质之间的相互作用 绿色代表下调的差异蛋白(FC≤0.65);红色代表上调的差异蛋白(FC≥1.5);长方形表示富集的经典通路;连接线显示多种蛋白质之间或蛋白质与通路之间的相互作用;TBI:创伤性脑损伤;CORT:皮质酮;FC:差异倍数
Fig.5 Protein-protein interactions with top 10 node proteins between CORT treatment group and TBI model group
[1]
Maas AIR,Menon DK,Adelson PD,et al. Traumatic brain injury:integrated approaches to improve prevention,clinical care,and research[J]. Lancet Neurol,2017,16(12): 987-1048. DOI: 10.1016/s1474-4422(17)30371-x.
[2]
齐洪武,刘岩松,曾维俊,等. 儿童创伤性脑损伤的研究进展[J]. 中华神经创伤外科电子杂志,2022,8(2): 121-124. DOI:10.3877/cma.j.issn.2095-9141.2022.02.012.Qi HW,Liu YS,Zeng WJ,et al. Research progress of childhood traumatic brain injury[J]. Chin J Neurotrauma Surg(Electronic Edition),2022,8(2): 121-124. DOI: 10.3877/cma.j.issn.2095-9141.2022.02.012.
[3]
Zhang B,Xu X,Niu F,et al. Corticosterone replacement alleviates hippocampal neuronal apoptosis and spatial memory impairment induced by dexamethasone via promoting brain corticosteroid receptor rebalance after traumatic brain injury[J]. J Neurotrauma,2020,37(2): 262-272. DOI: 10.1089/neu.2019.6556.
[4]
Zhang B,Yang M,Yan Q,et al. The dual dose-dependent effects of corticosterone on hippocampal cell apoptosis after traumatic brain injury depend on the activation ratio of mineralocorticoid receptors to glucocorticoid receptors[J]. Front Pharmacol,2021,12: 713715. DOI: 10.3389/fphar.2021.713715.
[5]
Niu F,Zhang B,Feng J,et al. Protein profiling identified mitochondrial dysfunction and synaptic abnormalities after dexamethasone intervention in rats with traumatic brain injury[J].Neural Regen Res,2021,16(12): 2438-2445. DOI: 10.4103/1673-5374.313047.
[6]
牛非,冯洁,茆翔,等. 突触形成和线粒体功能异常相关蛋白在急性创伤性颅脑损伤大鼠海马组织中的表达及其意义[J]. 中华神经外科杂志,2023,39(6): 612-617. DOI: 10.3760/cma.j.cn112050-20221122-00543.Niu F,Feng J,Mao X,et al. Expression and significance of synaptogenesis and mitochondrial dysfunction-related proteins in hippocampus of rats with acute traumatic brain injury[J]. Chin J Neurosurg,2023,39(6): 612-617. DOI: 10.3760/cma.j.cn112050-20221122-00543.
[7]
Zhang B,Bai M,Xu X,et al. Corticosteroid receptor rebalancing alleviates critical illness-related corticosteroid insufficiency after traumatic brain injury by promoting paraventricular nuclear cell survival via Akt/CREB/BDNF signaling[J]. J Neuroinflammation,2020,17(1): 318. DOI: 10.1186/s12974-020-02000-2.
[8]
Liang Y,Tong F,Zhang L,et al. iTRAQ-based proteomic analysis discovers potential biomarkers of diffuse axonal injury in rats[J].Brain Res Bull,2019,153: 289-304. DOI: 10.1016/j.brainresbull.2019.09.004.
[9]
Salehi A,Zhang JH,Obenaus A. Response of the cerebral vasculature following traumatic brain injury[J]. J Cereb Blood Flow Metab,2017,37(7): 2320-2339. DOI: 10.1177/0271678x177 01460.
[10]
Conti A,Sanchez-Ruiz Y,Bachi A,et al. Proteome study of human cerebrospinal fluid following traumatic brain injury indicates fibrin(ogen) degradation products as trauma-associated markers[J]. J Neurotrauma,2004,21(7): 854-863. DOI: 10.1089/0897715041526212.
[11]
Zhao JJ,Liu ZW,Wang B,et al. Inhibiting endogenous tissue plasminogen activator enhanced neuronal apoptosis and axonal injury after traumatic brain injury[J]. Neural Regen Res,2020,15(4): 667-675. DOI: 10.4103/1673-5374.266914.
[12]
Böhm JK,Schaeben V,Schäfer N,et al. Extended coagulation profiling in isolated traumatic brain injury: a centrer-TBI analysis[J]. Neurocrit Care,2022,36(3): 927-941. DOI: 10.1007/s12028-021-01400-3.
[13]
Connor DE Jr,Chaitanya GV,Chittiboina P,et al. Variations in the cerebrospinal fluid proteome following traumatic brain injury and subarachnoid hemorrhage[J]. Pathophysiology,2017,24(3):169-183. DOI: 10.1016/j.pathophys.2017.04.003.
[14]
Robicsek SA,Bhattacharya A,Rabai F,et al. Blood-related toxicity after traumatic brain injury: potential targets for neuroprotection[J]. Mol Neurobiol,2020,57(1): 159-178. DOI: 10.1007/s12035-019-01766-8.
[15]
Garland P,Durnford AJ,Okemefuna AI,et al. Heme-hemopexin scavenging is active in the brain and associates with outcome after subarachnoid hemorrhage[J]. Stroke,2016,47(3): 872-876. DOI:10.1161/strokeaha.115.011956.
[16]
De Blasio D,Fumagalli S,Orsini F,et al. Human brain trauma severity is associated with lectin complement pathway activation[J]. J Cereb Blood Flow Metab,2019,39(5): 794-807. DOI:10.1177/0271678x18758881.
[17]
Hammad A,Westacott L,Zaben M. The role of the complement system in traumatic brain injury: a review[J]. J Neuroinflammation,2018,15(1): 24. DOI: 10.1186/s12974-018-1066-z.
[18]
Alawieh A,Langley EF,Weber S,et al. Identifying the role of complement in triggering neuroinflammation after traumatic brain injury[J]. J Neurosci,2018,38(10): 2519-2532. DOI: 10.1523/jneurosci.2197-17.2018.
[19]
Guilhaume-Correa F,Pickrell AM,VandeVord PJ. The imbalance of astrocytic mitochondrial dynamics following blast-induced traumatic brain injury[J]. Biomedicines,2023,11(2): 329. DOI:10.3390/biomedicines11020329.
[1] 杨桂清, 孟静静. 哺乳期亚临床乳腺炎的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 376-379.
[2] 费一鸣, 刘卓, 张丽娟. 组学分析在早产分子机制中的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 504-510.
[3] 周涵, 武胡雯, 张培深, 邓晗彬, 范闻轩, 李嘉诚, 程少文. 蛋白质组学在慢性难愈合创面研究中的应用进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 536-540.
[4] 汪艳, 孙美玲, 闵凌峰. 基于TCGA 数据库肺腺癌铁死亡相关基因CA9 的鉴定[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 888-894.
[5] 罗玉, 徐春园, 王振, 胡丹. 晚期非小细胞肺癌抗程序性细胞死亡蛋白-1治疗预后影响因素与研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 1037-1041.
[6] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[7] 章敏. 利用多组学技术筛选慢性肾脏病早期预警和预后标志物[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 120-120.
[8] 何许巍, 刘洋, 程庆砾, 敖强国. 急性肾损伤早期生物标志物即时检测的研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(01): 48-52.
[9] 冯熔熔, 苏晓乐, 王利华. 慢性肾脏病患者并发心血管疾病相关生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 273-278.
[10] 韩雨桐, 丁宁, 吴霞, 甘丽祯, 陈正国, 吴云川, 韦庆波. 蛋白质组学在糖尿病相关眼病中作用的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(06): 375-379.
[11] 李彦腾, 张剑宁. 轻型颅脑战创伤的诊治[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(01): 1-4.
[12] 张瑜廉, 党韩寒, 张传鹏, 何昆, 陈鹏宇, 张昀昇, 王在, 张黎, 于炎冰. 创伤性脑损伤急性期细胞焦亡关键分子的竞争性内源性RNA调控网络构建与验证[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(01): 5-16.
[13] 赵文兵, 朱细燕, 许民辉, 徐伦山, 赵辉. 高原环境下创伤性脑损伤院前救治的策略与实践[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(01): 57-61.
[14] 刘昕, 张至君, 王绅, 张敏, 王如海, 彭丽, 张高健. 轻型创伤性脑损伤患者早期病情恶化的影响因素分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(01): 31-37.
[15] 王如海, 王绅, 张敏, 李春, 韩超, 于强, 胡海成, 李习珍. 重型创伤性脑损伤患者去骨瓣减压术后短期死亡风险的影响因素分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 285-291.
阅读次数
全文


摘要