切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2021, Vol. 07 ›› Issue (03) : 187 -190. doi: 10.3877/cma.j.issn.2095-9141.2021.03.012

综述

胎儿脊柱裂的致病因素与治疗的研究进展
喻勇1, 杨华2,(), 徐卡娅2   
  1. 1. 550004 贵州,贵州医科大学
    2. 550004 贵州,贵州医科大学附属医院神经外科
  • 收稿日期:2020-06-05 出版日期:2021-06-15
  • 通信作者: 杨华
  • 基金资助:
    贵州省普通高等学校青年科技人才成长项目(黔教合KY字[2021]190); 贵州医科大学2018年度学术新苗培养及创新探索专项项目(黔科合平台人才[2018]5779-44)

Progress of the pathogenic factors and treatment of fetal spina bifida

Yong Yu1, Hua Yang2,(), Kaya Xu2   

  1. 1. Guizhou Medical University, Guizhou 550004, China
    2. Department of Neurosurgery, Affiliated Hospital of Guizhou University, Guizhou 550004, China
  • Received:2020-06-05 Published:2021-06-15
  • Corresponding author: Hua Yang
引用本文:

喻勇, 杨华, 徐卡娅. 胎儿脊柱裂的致病因素与治疗的研究进展[J]. 中华神经创伤外科电子杂志, 2021, 07(03): 187-190.

Yong Yu, Hua Yang, Kaya Xu. Progress of the pathogenic factors and treatment of fetal spina bifida[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2021, 07(03): 187-190.

随着影像学的发展,产前胎儿神经系统发育异常检出率不断升高,脊柱裂也被不断检出,然而对于发现胎儿脊柱裂后是否应终止妊娠尚无统一标准,以往对于胎儿脊柱裂的致病因素及治疗相关进展的文献报道比较分散。本文主要针对胎儿脊柱裂的致病因素、治疗相关进展以及是否终止妊娠等问题作一综述,并提出相应诊疗策略,以期为临床治疗提供参考。

With the development of imaging, the detection rate of prenatal fetal nervous system abnormalities is increasing, and spina bifida is also continuously detected. However, there is currently no unified answer to the question of whether pregnancy should be terminated after fetal spina bifida is found. The literature reports on the pathogenic factors and treatment-related progress of fetal spina bifida are scattered. This article mainly focuses on the pathogenic factors of fetal spina bifida, treatment-related progress, and whether to terminate pregnancy and other issues, and proposes corresponding diagnosis and treatment strategies in order to provide reference for clinical treatment.

[1]
Copp AJ, Adzick NS, Chitty LS, et al. Spina bifida[J]. Nat Rev Dis Primers, 2015, 1: 15007.
[2]
Adzick NS. Fetal myelomeningocele: natural history, pathophysiology, and in-utero intervention[J]. Semin Fetal Neonatal Med, 2010, 15(1): 9-14.
[3]
Li Z, Ren A, Zhang L. Extremely high prevalence of neural tube defects in a 4-county area in Shanxi Province, China[J]. Birth Defects Res A Clin Mol Teratol, 2006, 76(4): 237-240.
[4]
Sahmat A, Gunasekaran R, Mohd-Zin SW, et al. The prevalence and distribution of spina bifida in a single major referral center in Malaysia[J]. Front Pediatr, 2017, 55: 237.
[5]
Beyer DA, Diedrich K, Weichert J, et al. Seasonality of spina bifida in northern Germany[J]. Arch Gynecol Obstet, 2011, 284(4): 849-854.
[6]
Canfield MA, Honein MA, Yuskiv N, et al. National estimates and race/ethnic-specific variation of selected birth defects in the United States, 1999-2001[J]. Birth Defects Res A Clin Mol Teratol, 2006, 76(11): 747-756.
[7]
Fauza DO, Jennings RW, Teng YD, et al. Neural stem cell delivery to the spinal cord in an ovine model of fetal surgery for spina bifida[J]. Surgery, 2008, 144(3): 367-373.
[8]
王维.叶酸的绿色合成工艺研究[D].南京:东南大学, 2016.
[9]
Boyles AL, Hammock P, Speer MC. Candidate gene analysis in human neural tube defects[J]. Am J Med Genet C Semin Med Genet, 2005, 135C(1): 9-23.
[10]
Zhang T, Lou J, Zhong R, et al. Genetic variants in the folate pathway and the risk of neural tube defects: a meta-analysis of the published literature[J]. PLoS One, 2013, 8(4): e59570.
[11]
Mohd-Zin SW, Marwan AI, Abou C, et al. Spina bifida: pathogenesis, mechanisms, and genes in mice and humans[J]. Scientifica, 2017, 2017: 5364827.
[12]
Atta CA, Fiest KM, Frolkis AD, et al. Global birth prevalence of spina bifida by folic acid fortification status: a systematic review and meta-analysis[J]. Am J Public Health, 2016, 106(1): e24-e34.
[13]
Blomberg MI, Källén B. Maternal obesity and morbid obesity: the risk for birth defects in the offspring[J]. Birth Defects Res A Clin Mol Teratol, 2010, 88(1): 35-40.
[14]
Carmichael SL, Rasmussen SA, Shaw GM. Prepregnancy obesity: a complex risk factor for selected birth defects[J]. Birth Defects Res A Clin Mol Teratol, 2010, 88(10): 804-810.
[15]
Stothard KJ, Tennant PWG, Bell R, et al. Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis[J]. JAMA, 2009, 301(6): 636-650.
[16]
Moley KH. Hyperglycemia and apoptosis: mechanisms for congenital malformations and pregnancy loss in diabetic women[J]. Trends Endocrinol Metab, 2001, 12(2): 78-82.
[17]
Davidson CM, Northrup H, King TM, et al. Genes in glucose metabolism and association with spina bifida[J]. Reprod Sci, 2008, 15(1): 51-58.
[18]
Murdoch JN, Damrau C, Paudyal A, et al. Genetic interactions between planar cell polarity genes cause diverse neural tube defects in mice[J]. Dis Model Mech, 2014, 7(10): 1153-1163.
[19]
Keller R. Shaping the vertebrate body plan by polarized embryonic cell movements[J]. Science, 2002, 298(5600): 1950-1954.
[20]
Goodrich LV, Strutt D. Principles of planar polarity in animal development[J]. Development, 2011, 138(10): 1877-1892.
[21]
Veeman MT, Slusarski DC, Kaykas A, et al. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements[J]. Curr Biol, 2003, 13(8): 680-685.
[22]
Tada M, Smith JC. Xwnt11 is a target of xenopus brachyury: regulation of gastrulation movements via dishevelled, but not through the canonical Wnt pathway[J]. Development, 2000, 127(10): 2227-2238.
[23]
Allache R, De Marco P, Merello E, et al. Role of the planar cell polarity gene CELSR1 in neural tube defects and caudal agenesis[J]. Birth Defects Res A Clin Mol Teratol, 2012, 94(3): 176-181.
[24]
Greene ND, Stanier P, Copp AJ. Genetics of human neural tube defects[J]. Hum Mol Genet, 2009, 18(R2): R113-R129.
[25]
Harris MJ. Insights into prevention of human neural tube defects by folic acid arising from consideration of mouse mutants[J]. Birth Defects Res A Clin Mol Teratol, 2009, 85(4): 331-339.
[26]
Au KS, Ashley-Koch A, Northrup H. Epidemiologic and genetic aspects of spina bifida and other neural tube defects[J]. Dev Disabil Res Rev, 2010, 16(1): 6-15.
[27]
Radbruch A, Isaacs J. Animal models in infection and inflammation-chance and necessity[J]. Eur J Immunol, 2010, 39(8): 1991-1993.
[28]
Meuli M, Meuli-Simmen C, Yingling CD, et al. Creation of myelomeningocele in utero: a model of functional damage from spinal cord exposure in fetal sheep[J]. J Pediatr Surg, 1995, 30(7): 1028-1032.
[29]
Meuli M, Meuli-Simmen C, Hutchins GM, et al. In utero surgery rescues neurological function at birth in sheep with spina bifida[J]. Nature Medicine, 1995, 1(4): 342-347.
[30]
Adzick NS. Fetal surgery for spina bifida: past, present, future[J]. Semin Pediatr Surg, 2013, 22(1): 10-17.
[31]
Adzick NS. Fetal surgery for myelomeningocele: trials and tribulations. Isabella Forshall Lecture[J]. J Pediatr Surg, 2012, 47(2): 273-281.
[32]
Inversetti A, Van der Veeken L, Thompson D, et al. Neurodevelopmental outcome of children with spina bifida aperta repaired prenatally vs postnatally: systematic review and meta-analysis[J]. Ultrasound Obstet Gynecol, 2019, 53(3): 293-301.
[33]
Papanna R, Moise KJ Jr, Mann LK, et al. Cryopreserved human umbilical cord patch for in-utero spina bifida repair[J]. Ultrasound Obstet Gynecol, 2016, 47(2): 168-176.
[34]
Mann LK, Won JH, Trenton NJ, et al. Cryopreserved human umbilical cord versus acellular dermal matrix patches for in utero fetal spina bifida repair in a pregnant rat model[J]. J Neurosurg Spine, 2019, 32(2): 321-331.
[35]
Sacco A, Van der Veeken L, Bagshaw E, et al. Maternal complications following open and fetoscopic fetal surgery: a systematic review and meta-analysis[J]. Prenat Diagn, 2019, 39(4): 251-268.
[36]
Pedreira DA, Reece EA, Chmait RH, et al. Fetoscopic repair of spina bifida: safer and better?[J]. Ultrasound Obstet Gynecol, 2016, 48(2): 141-147.
[37]
Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details[J]. Cell Stem Cell, 2009, 4(3): 206-216.
[38]
Prockop DJ, Kota DJ, Bazhanov N, et al. Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs)[J]. J Cell Mol Med, 2010, 14(9): 2190-2199.
[39]
Li H, Gao F, Ma L, et al. Therapeutic potential of in utero mesenchymal stem cell (MSCs) transplantation in rat foetuses with spina bifida aperta[J]. J Cell Mol Med, 2012, 16(7): 1606-1617.
[40]
Bamba Y, Nonaka M, Sasaki N, et al. Generation of induced pluripotent stem cells and neural stem/progenitor cells from newborns with spina bifida aperta[J]. Asian Spine J, 2017, 11(6): 870-879.
[41]
Okano H, Nakamura M, Yoshida K, et al. Steps toward safe cell therapy using induced pluripotent stem cells[J]. Circ Res, 2013, 112(3): 523-533.
[1] 周伟, 蔡恒, 范海迪, 李惠中, 王传霞, 顾茂胜. cblC型甲基丙二酸血症MMACHC基因新突变对小鼠神经细胞凋亡及Wnt/β-catenin信号通路的作用机制[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 528-539.
[2] 刘伟华, 赵宇, 刘仲凤, 吴焕童, 张广吉, 陈志国. 神经干细胞生物制剂治疗中枢神经系统恶性肿瘤的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(01): 59-62.
[3] 王泽宁, 侯博儒, 姜呈, 任海军. 小胶质细胞对神经干细胞调控机制的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(03): 172-176.
[4] 林宗龙, 李青. 神经干细胞巢成分及调节机制的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2019, 09(06): 369-374.
[5] 徐如祥, 邱文乔. 生物组装类脑生态位促进神经再生修复展望[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 1-5.
[6] 王洋洋, 高谋, 徐如祥. 过敏毒素、小胶质以及神经干细胞在神经炎症和神经再生中的作用[J]. 中华神经创伤外科电子杂志, 2021, 07(04): 193-198.
[7] 梁雨婷, 胡悦, 赵安琪, 王沐榕, 孙建, 李力卓. 雌激素作用下神经干细胞移植治疗创伤性脑损伤的研究进展[J]. 中华神经创伤外科电子杂志, 2020, 06(06): 373-376.
[8] 高谋, 徐如祥, 王文佳, 董勤, 丁柏匀, 姚慧, 杨志军. 颅脑创伤动物血清预处理诱导型神经干细胞移植对补体活化的影响[J]. 中华神经创伤外科电子杂志, 2019, 05(04): 227-232.
[9] 高谋, 徐如祥, 董勤, 郭莉丽. CR2-Crry预处理诱导神经干细胞在颅脑损伤中发挥神经保护作用[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(04): 215-220.
[10] 李彦钊, 张绪新, 孙晶, 郎明非, 任刚, 邓东风. 基于微流控平台的胶质母细胞瘤干细胞中miRNA-874表达的研究[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(04): 205-208.
[11] 徐如祥, 杨超, 陈强, 张洪钿. 间充质干细胞治疗阿尔茨海默病的现状与展望[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(01): 1-5.
[12] 周庆忠, 冯晓兰, 何萍, 张戈, 赵茂, 白永恒, 冯大雄. 封闭Notch信号影响神经干细胞分化的体外研究[J]. 中华临床医师杂志(电子版), 2022, 16(06): 579-587.
[13] 王天仁, 张巧霞, 石瑶, 汤雯珺, 马捷. 神经干细胞在精神分裂症患者治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2020, 14(12): 1002-1008.
[14] 殷秀梅, 杨丽红, 姜涛, 杜元灏. 基于神经干细胞探讨巢蛋白在缺血性脑卒中中的作用机制及针刺效应[J]. 中华针灸电子杂志, 2023, 12(03): 111-116.
[15] 马晓瑭, 王艳, 李素青, 刘金花, 石雨萌, 潘群文. 富含miR-132-3p的神经干细胞释放的外泌体激活MEK1/2/-ERK1/2通路改善缺氧无糖诱导的脑微血管内皮细胞损伤[J]. 中华脑血管病杂志(电子版), 2022, 16(03): 172-181.
阅读次数
全文


摘要