切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2016, Vol. 02 ›› Issue (02) : 108 -111. doi: 10.3877/cma.j.issn.2095-9141.2016.02.012

所属专题: 文献

专题笔谈

Tau蛋白的研究进展
张鸿日1, 彭静华1, 周洪龙2, 徐如祥2,()   
  1. 1. 471003 洛阳,河南科技大学第一附属医院神经外科
    2. 100700 北京,北京军区神经外科研究所
  • 收稿日期:2015-12-26 出版日期:2016-04-15
  • 通信作者: 徐如祥

The research progress of Tau protein

Hongri Zhang1, Jinghua Peng1, Honglong Zhou2, Ruxiang Xu2,()   

  1. 1. First Affiliated Hospital of Henan Science and Technology University, Luoyang 471003, China
    2. Neurosurgical Institute of Beijing Military Region, Beijing 100700, China
  • Received:2015-12-26 Published:2016-04-15
  • Corresponding author: Ruxiang Xu
  • About author:
    Corresponding author: Xu Ruxiang, Email:
引用本文:

张鸿日, 彭静华, 周洪龙, 徐如祥. Tau蛋白的研究进展[J]. 中华神经创伤外科电子杂志, 2016, 02(02): 108-111.

Hongri Zhang, Jinghua Peng, Honglong Zhou, Ruxiang Xu. The research progress of Tau protein[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2016, 02(02): 108-111.

Tau蛋白是微管相关蛋白,不仅广泛表达于中枢和外周神经系统,也存在于肺、肾、睾丸等组织中。在中枢神经系统中Tau蛋白主要分布在神经元轴突,参与微管的装配并维持微管的稳定。Tau蛋白的异常堆积被认为是老年痴呆症的神经病理学标志。本文就Tau蛋白的功能和相关疾病做了详细综述。

Tau protein is microtubule associated protein, not only express the central and peripheral nervous system, but also present in the lung, kidney and testis tissue. Tau protein in the central nervous system are mainly distributed in neuronal axons, participate in the assembly of microtubules and maintain the stability of microtubules. Abnormal accumulation of Tau protein is considered to be neuropathology sign of Alzheimer’s disease. In this paper, the function of the Tau protein made detailed reviews and related diseases.

[1]
Hirokawa N,Funakoshi T,Sato-Harada R, et al. Selective stabilization of tau in axons and microtubule-associated protein 2C in cell bodies and dendrites contributes to polarized localization of cytoskeletal proteins in mature neurons[J]. J Cell Biol, 1996, 132(4): 667-679.
[2]
Ittner LM,Ke YD,Delerue F, et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models[J]. Cell, 2010, 142(3): 387-397.
[3]
Zempel H,Luedtke J,Kumar Y, et al. Mandelkow E M Amyloid-β oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin[J]. EMBO J, 2013, 32(22): 2920-2937.
[4]
Hanger DP,Anderton BH,Noble W. Tau phosphorylation: The therapeutic challenge for neurodegenerative disease[J]. Trends Mol Med, 2009, 15(3): 112-119.
[5]
Santacruz K,Lewis J,Spires T, et al. Tau suppression in a neurodegenerative mouse model improves memory function[J]. Science, 2005, 309(5733): 476-481.
[6]
Andrews-Zwilling Y,Bien-Ly N,Xu Q, et al. Apolipoprotein E4 causes age-and tau-dependent impairment of GABAergic interneurons leading to learning and memory deficits in mice[J]. J Neurosci, 2010, 30(41): 13707-13717.
[7]
Jho YS,Zhulina EB,Kim MW, et al. Monte carlo simulations of tau proteins: Effect of phosphorylation[J]. Biophys J, 2010, 99(8): 2387-2397.
[8]
Fischer D,Mukrasch MD,Biernat J, et al. Conformational changes specific for pseudophosphorylation at serine 262 selectively impair binding of tau to microtubules[J]. Biochemistry, 2009, 48(42): 10047-10055.
[9]
Dolan PJ,Johnson GV. The role of tau kinases in Alzheimer’s disease [J]. Curr Opin Drug Discov Devel, 2010, 13(5): 595-603.
[10]
Wang QM,Fiol CJ,DePaoli-Roach AA, et al. Glycogen synthase kinase-3 beta is a dual specificity kinase differentially regulated by tyrosine and serine/threonine phosphorylation[J]. Biol Chem, 1994, 269(20): 14566-14574.
[11]
Dhavan R,Tsai LH. A decade of CDK5[J]. Nat Rev Mol Cell Biol, 2001, 2(10): 749-759.
[12]
Lee MS,Kwon YT,Li M, et al. Neurotoxicity induces cleavage of p35 to p25 by calpain[J]. Nature, 2000, 405(6784):360-364.
[13]
Vingtdeux V,Davies P,Dickson DW, et al. AMPK is abnormally activated in tangle-and pre-tangle-bearing neurons in Alzheimer disease and other tauopathies. Acta Neuropathol, 2011, 121(3): 337-349.
[14]
Gustke N,Steiner B,Mandelkow EM, et al.The Alzheimer-like phosphorylation of tau protein reduces microtubule binding and involves Ser-Pro and Thr-Pro motifs. FEBS Lett, 1992, 307(2): 199-205.
[15]
Majounie E,Cross W,Newsway V, et al. Variation in tau isoform expression in different brain regions and disease states[J]. Neurobiol Aging, 2013, 34(7): 1922.e7-1922.e12.
[16]
Ittner LM,Götz J. Amyloid-β and tau--A toxic pas de deux in Alzheimer’s disease[J]. Nat Rev Neurosci, 2011, 12(2):67-72.
[17]
Woehlke G,SchliwaM, Walking on two heads: the many talents of kinesin[J]. Nat. Rev Mol Cell Biol, 2000, 1(1): 50-58.
[18]
Toomre D,Manstein DJ. Lighting up the cell surface with evanescent wave microscopy[J]. Trends Cell Biol, 2001, 11(7): 298-303.
[19]
Ledesma MD,Medina M,Avila J. The in vitro formation of recombinant tau polymers: Effect of phosphorylation and glycation[J]. Mol Chem Neuropathol, 1996, 27(3): 249-258.
[20]
Hardy J,Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics[J]. Science, 2002, 297(5580): 353-356.
[21]
Hamdane M,Dourlen P,Bretteville A, et al. Pin1 allows for differential Tau dephosphorylation in neuronal cells[J]. Mol Cell Neurosci, 2006, 32(1-2): 155-160.
[22]
Miyata Y,Koren J,Kiray J, et al. Molecular chaperones and regulation of tau quality control:strategies for drug discovery in tauopathies[J]. Future Med Chem, 2011, 3(12): 1523-1537.
[23]
Whiteman IT,Gervasio OL,Cullen KM, et al. Activated ADF/cofilin sequesters phosphorylated microtubuleassociated-protein during the assembly of Alzheimer-like neuritic cytoskeletal striations[J]. J Neurosci, 2009, 29(41): 129-134.
[24]
Hyman BT,Augustinack JC,Ingelsson M. Transcriptional and conformational changes of the tau molecule in Alzheimer’s disease[J]. Biochim Biophys Acta, 2005, 1739(2-3): 150-157.
[25]
Feuillette S,Miguel L,Frébourg T, et al. Drosophila models of human tauopathies indicate that Tau protein toxicity in vivo is mediated by soluble cytosolic phosphorylated forms of the protein[J]. J Neurochem, 2010, 113(4): 895-903.
[26]
Haase C,Stieler JT,Arendt T, et al. Pseudophosphorylation of tau protein alters its ability for self-aggregation[J]. Neurochem, 2004, 88(6): 1509-1520.
[27]
Stokin GB,Goldstein LS. Axonal transport and Alzheimer’s disease [J]. Annu Rev Biochem, 2006, 75: 607-627.
[28]
Reynolds CH,Betts JC,Blackstock WP, et al. Phosphorylation sites on tau identified by nanoelectrospray mass spectrometry: Differences in vitro between the mitogen-activated protein kinases ERK2 c-Jun N-terminal kinase and P38 and glycogen synthase kinase-3beta[J]. J Neurochem, 2000, 74(4): 1587-1595.
[29]
Mandelkow EM,Mandelkow E. Biochemistry and Cell Biology of Tau Protein in Neurofibrillary Degeneration[J]. Cold Spring Harb Perspect Med, 2012, 2(7): a006247.
[30]
Johnson GV,Stoothoff WH. Tau phosphorylation in neuronal cell function and dysfunction[J]. J Cell Sci, 2004, 117(Pt24): 5721-5729.
[31]
Spires-Jones TL,Stoothoff WH. Tau pathophysiology in neurodegeneration: A tangled issue[J]. Trends Neurosci, 2009, 32(3): 150-159.
[32]
Billingsley ML,Kincaid RL. Regulated phosphorylation and dephosphorylation of tau protein: Effects on microtubule interaction intracellular trafficking and neurodegeneration[J]. Biochem J, 2009, 16(Pt3): 409-427.
[33]
Zemlan FP,Rosenberg WS,Luebbe PA, et al. Quantification of axonal damage in traumatic brain injury: affinity purification and characterization of cerebrospinal fluid tau proteins[J]. J Neuro Chem, 1999, 72(2): 741-750.
[1] 关明函, 薛志强. 右美托咪定改善大鼠脑缺血再灌注后脑损伤的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 270-276.
[2] 王洋洋, 徐如祥. 四面体框架核酸在颅脑损伤和阿尔兹海默病认知功能障碍中的治疗作用[J]. 中华神经创伤外科电子杂志, 2022, 08(06): 321-323.
[3] 白壮壮, 李东波, 杨倩. 慢性创伤性脑病诊断相关标志物的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 302-306.
[4] 柴慈婧, 涂悦, 张启财, 侯伊玲. 抗tau蛋白抗体基因疗法对慢性颅脑创伤的治疗作用研究[J]. 中华神经创伤外科电子杂志, 2020, 06(05): 292-298.
[5] 王柳清, 张守成, 刘赞华, 李敬伟. 特发性震颤诊疗进展[J]. 中华脑科疾病与康复杂志(电子版), 2019, 09(03): 168-171.
[6] 苏霄, 赵世刚, 赵婷婷, 岳晓蓉. 阿尔兹海默病发病机制的新进展[J]. 中华临床医师杂志(电子版), 2021, 15(03): 224-228.
[7] 乔蕾, 孙寅轶, 曲忠森. tau蛋白和β-淀粉样蛋白在阿尔茨海默病病理过程中作用及自噬机制的研究概况[J]. 中华诊断学电子杂志, 2019, 07(02): 94-97.
[8] 宋蕾, 吴寒, 侯双兴, 楼菁菁, 刘兴党. 关于阿尔茨海默病中视网膜和视神经及相关物质的研究进展[J]. 中华脑血管病杂志(电子版), 2022, 16(05): 351-355.
阅读次数
全文


摘要