切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2016, Vol. 02 ›› Issue (02) : 112 -115. doi: 10.3877/cma.j.issn.2095-9141.2016.02.013

所属专题: 文献

专题笔谈

Tim-3在肿瘤免疫中的研究进展
邓圆圆1, 范益民1,()   
  1. 1. 030001 太原,山西医科大学第一医院神经外科
  • 收稿日期:2015-07-06 出版日期:2016-04-15
  • 通信作者: 范益民
  • 基金资助:
    山西省卫计委科研课题(2015025)

Research progress of immune checkpoint Tim-3 in tumor immunology

Yuanyuan Deng1, Yimin Fan1,()   

  1. 1. Department of Neurosuegery, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Received:2015-07-06 Published:2016-04-15
  • Corresponding author: Yimin Fan
  • About author:
    Corresponding author: Fan Yimin, Email:
引用本文:

邓圆圆, 范益民. Tim-3在肿瘤免疫中的研究进展[J]. 中华神经创伤外科电子杂志, 2016, 02(02): 112-115.

Yuanyuan Deng, Yimin Fan. Research progress of immune checkpoint Tim-3 in tumor immunology[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2016, 02(02): 112-115.

免疫检查点分子是现在肿瘤免疫治疗讨论的热点。本文通过对免疫检查点T细胞免疫球蛋白粘蛋白3(Tim-3)的相关研究,从以下三个方面讨论它抑制肿瘤免疫的作用:第一,与不同的配体Gal-9、HMGB1、CEACAM-1结合来发挥作用;第二,可以负性调控CD4+T/CD8+T/NK等重要的免疫细胞;第三,针对Tim-3的抗肿瘤免疫治疗。表明Tim-3具有通过与不同配体的特异性结合,抑制固有免疫和适应性免疫细胞的能力,使肿瘤产生免疫逃逸。旨在阐述Tim-3免疫抑制的特异性,为免疫靶向治疗提供新思路和依据。

The discovery of immune checkpoints has become an interesting topic in tumor immunotherapy area. This aticle discussed its function of tumor inhibition from three aspects through researches of immune checkpoint Tim-3. Firstly, play a role through combination of the different ligands. Secondly, negatively regulate the CD4+T/CD8+T/NK cells. Thirdly, immunotherapy Aimed at Tim-3. Declare that Tim-3 makes the contribution to tumor immune escape by specific binding with different ligands to the inhibitions both inherent immunity and adaptive immunity. This state of Tim-3 specificity of immunosuppressive is aimed at providing the new way and basis for tageted immunologic therapy.

[1]
Le Mercier I,Lines JL,Noelle RJ. Beyond CTLA-4 and PD-1, the Generation Z of Negative Checkpoint Regulators[J]. Front Immunol, 2015, 6: 418.
[2]
Monney L,Sabatos CA,Gaglia JL, et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease[J]. Nature, 2002, 415(6871): 536-541.
[3]
Sabatos CA,Chakravarti S,Cha E, et al. Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance[J]. Nat Immunol, 2003, 4(11): 1102-1110.
[4]
Cao E,Zang X,Ramagopal UA, et al. T cell immunoglobulin mucin-3 crystal structure reveals a galectin-9-independent ligand-binding surface[J]. Immunity, 2007, 26(3): 311-321.
[5]
Santiago C,Ballesteros A,Tami C, et al. Structures of T cell immunoglobulin mucin receptors 1 and 2 reveal mechanisms for regulation of immune responses by the Tim receptor family[J]. Immunity, 2007, 26(3): 299-310.
[6]
DeKruyff RH,Bu X,Ballesteros A, et al. T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells[J]. J Immunol, 2010, 184(4): 1918-1930.
[7]
Zhu C,Anderson AC,Kuchroo VK. Tim-3 and Its Regulatory Role in Immune Responses[J]. Curr Top Microbiol Immunol, 2011, 350: 1-15.
[8]
Rodriguez-Manzanet R,DeKrayff R,Kuchroo VK, et al. The costimulatory role of Tim molecules[J]. Immunol Rev, 2009, 229(1): 259-270.
[9]
Cao E,Zang X,Ramagopal UA, et al. T Cell Immunoglobulin Mucin-3 Crystal Structure Reveals a Galectin-9-Independent Ligand-Binding Surface[J]. Immunity, 2007, 26(3):311-321.
[10]
DeKruyff RH,Bu X,Ballesteros A, et al. T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells[J]. J Immunol, 2010, 184(4): 1918-1930.
[11]
Nakayama M,Akiba H,Takeda K, et al. Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation[J]. Blood, 2009, 113(16): 3821-3830.
[12]
Chabtini L,Mfarrej B,Mounayar M, et al. Tim-3 regulates innate immune cells to induce fetomaternal tolerance[J]. J Immunol, 2012, 190(1): 88-96.
[13]
Huang YH,Zhu C,Kondo Y, et al. CEACAM1 regulates Tim-3-mediated tolerance and exhaustion[J]. Nature, 2015, 517(7534): 386-390.
[14]
Japp AS,Kursunel MA,Meier S, et al. Dysfunction of PSA-specific CD8+ T cells in prostate cancer patients correlates with CD38 and Tim-3 expression[J]. Cancer Immunol Immunother, 2015, 64(11): 1487-1494.
[15]
Cai C,Xu YF,Wu ZJ, et al. Tim-3 expression represents dysfunctional tumor infiltrating T cells in renal cell carcinoma[J]. World J Urol, 2016, 34(4): 561-567.
[16]
Kang CW,Dutta A,Chang LY, et al. Apoptosis of tumor infiltrating effector Tim-3+CD8+ T cells in colon cancer[J]. Sci Rep, 2015, 5: 15659.
[17]
Heon EK,Wulan H,Macdonald LP, et al. IL-15 induces strong but short-lived tumor-infiltrating CD8 T cell responses through the regulation of Tim-3 in breast cancer[J]. Biochem Biophys Res Commun, 2015, 464(1): 360-366.
[18]
Yang ZZ,Grote DM,Ziesmer SC, et al. IL-12 upregulates Tim-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma[J]. J Clin Invest, 2012, 122(4): 1271-1282.
[19]
Zeijlemaker W,Kelder A,Oussoren-Brockhoff YJ, et al. A simple one-tube assay for immunophenotypical quantification of leukemic stem cells in acute myeloid leukemia[J]. Leukemia, 2016, 30(2): 439-446.
[20]
Li C,Chen X,Yu X, et al. Tim-3 is highly expressed in T cells in acute myeloid leukemia and associated with clinicopathological prognostic stratification[J]. Int J Clin Exp Pathol, 2014, 7(10): 6880-6888.
[21]
Kong Y,Zhang J,Claxton DF, et al. PD-1(hi)Tim-3(+) T cells associate with and predict leukemia relapse in AML patients post allogeneic stem cell transplantation[J]. Blood Cancer, 2015, 5: e330.
[22]
Prokhorov A,Gibbs BF,Bardelli M, et al. The immune receptor Tim-3 mediates activation of PI3 kinase/mTOR and HIF-1 pathways in human myeloid leukaemia cells[J]. Int J Biochem Cell Biol, 2015, 59: 11-20.
[23]
Gao L,Yu S,Zhang X. Hypothesis: Tim-3/Galectin-9, A New Pathway for Leukemia Stem Cells Survival by Promoting Expansion of Myeloid-Derived Suppressor Cells and Differentiating into Tumor-Associated Macrophages[J]. Cell Biochem Biophys, 2014, 70(1): 273-277.
[24]
Huang X,Bai X,Cao Y, et al. Lymphoma endothelium preferentially expresses Tim-3 and facilitates the progression of lymphoma by mediating immune evasion[J]. J Exp Med, 2010, 207(3): 505-2010.
[25]
Ndhlovu LC,Lopez-Vergès S,Barbour JD, et al. Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity[J]. Blood, 2012, 119(16): 3734-3743.
[26]
Gallois A,Silva I,Osman I, et al. Reversal of natural killer cell exhaustion by Tim-3 blockade[J]. Oncoimmunology, 2014, 3(12): e946365.
[27]
Xu L,Huang Y,Tan L, et al. Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma[J]. Int Immunopharmacol, 2015, 29(2): 635-641.
[28]
Komita H,Koido S,Hayashi K, et al. Expression of immune checkpoint molecules of T cell immunoglobulin and mucin protein 3/galectin-9 for NK cell suppression in human gastrointestinal stromal tumors[J]. Oncol Rep, 2015, 34(4): 2099-2105.
[29]
Wang Z,Zhu J,Gu H, et al. The Clinical Significance of Abnormal Tim-3 Expression on NK Cells from Patients with Gastric Cancer[J]. Immunol Invest, 2015, 44(6): 578-589.
[30]
Folgiero V,Cifaldi L,Pira GL, et al. Tim-3/Gal-9 interaction induces IFN-γ-dependent IDO1 expression in acute myeloid leukemia blast cells[J]. J Hematol Oncol, 2015, 8(1): 36.
[31]
Melero I,Hervas-Stubbs S,Glennie M, et al. Immunos Timulatory monoclonal antibodies for cancer therapy[J]. Nat Rev Cancer, 2007, 7(2): 95-106.
[32]
Melero I,Grimaldi AM,Perez-Gracia JL, et al. Clinical development of immunosTimulatory monoclonal antibodies and opportunities for combination[J]. Clini Cancer Res, 2013, 19(5): 997-1008.
[33]
Schreiber RD,Old LJ,Smyth MJ. Cancer immunoediting: integrating immunity′s roles in cancer suppression and promotion[J]. Science, 2011, 331(6024): 1565-1570.
[34]
Desrichard A,Snyder A,Chan TA. Cancer Neoantigens and Applications for Immunotherapy[J]. Clin Cancer Res, 2016, 22(4): 807-812.
[35]
Sathyanarayanan V,Neelapu SS. Cancer immunotherapy: Strategies for personalization and combinatorial approaches[J]. Mol Oncol, 2015, 9(10): 2043-2053.
[1] 韩丹, 王婷, 肖欢, 朱丽容, 陈镜宇, 唐毅. 超声造影与增强CT对儿童肝脏良恶性病变诊断价值的对比分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 939-944.
[2] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[3] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[4] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[5] 燕速, 霍博文, 徐惠宁. 4K荧光腹腔镜扩大右半结肠CME+D3根治术及No.206、No.204组淋巴结清扫术[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 14-14.
[6] 姚宏伟, 魏鹏宇, 高加勒, 张忠涛. 不断提高腹腔镜右半结肠癌D3根治术的规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 1-4.
[7] 杜晓辉, 崔建新. 腹腔镜右半结肠癌D3根治术淋巴结清扫范围与策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 5-8.
[8] 周岩冰, 刘晓东. 腹腔镜右半结肠癌D3根治术消化道吻合重建方式的选择[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 9-13.
[9] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[10] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[11] 张焱辉, 张蛟, 朱志贤. 留置肛管在中低位直肠癌新辅助放化疗后腹腔镜TME术中的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 25-28.
[12] 李凤仪, 李若凡, 高旭, 张超凡. 目标导向液体干预对老年胃肠道肿瘤患者术后血流动力学、胃肠功能恢复的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 29-32.
[13] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[14] 徐军, 姬园园, 陈君平, 王健. 伴菊形团结构的脑膜瘤合并颅骨侵犯一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 916-919.
[15] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
阅读次数
全文


摘要