切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2015, Vol. 01 ›› Issue (05) : 30 -32. doi: 10.3877/cma.j.issn.2095-9141.2015.05.008

所属专题: 文献

基础研究

小分子干扰RNA沉默GLI1基因抑制U87胶质瘤细胞的增殖
马剑波1, 孙恺2, 马冲3, 曹垒3, 赵建平3, 陈陆馗4,()   
  1. 1. 210009 南京,东南大学医学院
    2. 261053 潍坊,潍坊医学院
    3. 221009 徐州,徐州市中心医院神经外科
    4. 210009 南京,东南大学附属中大医院神经外科
  • 收稿日期:2015-06-28 出版日期:2015-10-15
  • 通信作者: 陈陆馗

Silencing GLI1 by siRNA inhibits the proliferation of glioma U87 cells

Jianbo Ma1, Kai Sun2, Chong Ma3, Lei Cao3, Jianping Zhao3, Lukui Chen4,()   

  1. 1. Southeast University Medical College, Nanjing 210009 China
    2. Weifang Medical University, Weifang 261053 China
    3. Department of Neurosurgery, Xuzhou Central Hospital China
    4. Department of Neurosurgery, Zhongda Hospital Southeast University, Nanjing 210009 China
  • Received:2015-06-28 Published:2015-10-15
  • Corresponding author: Lukui Chen
  • About author:
    Corresponding author: Chen Lukui, Email:
引用本文:

马剑波, 孙恺, 马冲, 曹垒, 赵建平, 陈陆馗. 小分子干扰RNA沉默GLI1基因抑制U87胶质瘤细胞的增殖[J]. 中华神经创伤外科电子杂志, 2015, 01(05): 30-32.

Jianbo Ma, Kai Sun, Chong Ma, Lei Cao, Jianping Zhao, Lukui Chen. Silencing GLI1 by siRNA inhibits the proliferation of glioma U87 cells[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2015, 01(05): 30-32.

目的

通过研究小分干扰RNA(siRNA)沉默胶质瘤相关癌基因1(GLI1)后对U87胶质瘤细胞的细胞增殖的影响。

方法

通过合成并转染siRNA抑制U87细胞内GLI1的表达,并记为GLI1 siRNA组,转染无意义的siRNA和未转染siRNA的细胞作为对照组。采用MTT法分析各组U87细胞的增殖,采用流式细胞技术分析各组细胞周期变化。

结果

Western blotting结果显示,与对照组和空白对照组相比,实验组U87细胞内GLI1的表达量显著下降(P<0.05);MTT实验发现,U87细胞的活性与阴性对照组和空白对照组相比显著下降,并且随着培养时间的延长,细胞的活性下降程度越明显(P<0.05);通过流式细胞术分析细胞周期显示,与对照组相比,实验组U87细胞的细胞周期被阻滞于G1期,并且其S期细胞的数量明显下降(P<0.05)。

结论

抑制GLI1的表达可有效抑制U87胶质瘤细胞的增殖,提示GLI1可作为胶质瘤的一种潜在治疗靶点。

Objective

To investigate the effect of glioma associated oncogene 1 (GLI1) reduction by small interference RNAs (siRNA) on cell proliferation and glucose metabolism of U87 glioma cells.

Methods

siRNA for GLI1 was transfected into U87 glioma cells to inhibit the expression of GLI1. The non-transfected cells and cells transfected with non-sense siRNA were used as controls.The proliferation of U87 cells was assessed by MTT assay, and the cell cycle stage was detected by flow cytometry.

Results

The results of Western blotting showed that GLI1’s expression was significantly down-regulated in GLI1 siRNA group compared to the two control groups(P<0.05); cell proliferation was assessed by MTT assays, cell proliferation was significantly inhibited 3 days after treatment of GLI1 siRNA compared with control groups, and declined with persistently along with the extension of the culture time (P<0.05); the results of flow cytometry showed that the cell cycle was blocked at G1 phase, and the number of cells in S phase declined significantly compared with control groups (P<0.05).

Conclusion

Interference of GLI1 expression can markedly inhibit the proliferation of U87 glioma cells, indicating that GLI1 can serve as a promising therapeutic target for glioma.

Key words: GLI1, siRNA, Glioma
图1 Western blotting分析GLI1蛋白的表达
图2 MTT检测转染siRNA-GLI1后不同时间段各组U87细胞增殖的相对存活率(%)
图3 流式细胞术检测各组U87细胞的细胞周期
[1]
Hui CC, Angers S. Gli proteins in development and disease[J]. Annu Rev Cell Dev Biol, 2011, 27(7): 513-537.
[2]
Atwood SX, Chang AL, Oro AE. Hedgehog pathway inhibition and the race against tumor evolution[J]. J Cell Biol, 2012, 199(2): 193-197.
[3]
Gopinath S, Malla R, Alapati K, et al. Cathepsin B and uPAR regulate self-renewal of glioma-initiating cells through GLI-regulated Sox2 and Bmi1 expression[J]. Carcinogenesis, 2013, 34 (3): 550-559.
[4]
Wan Y, Sun G, Wang Z, et al. miR-125b promotes cell proliferation by directly targeting Lin28 in glioblastoma stem cells with low expression levels of miR-125b[J]. Neuroreport, 2014, 25(5): 289-296.
[5]
Dorsett Y, Tuschl T. siRNAs: applications in functional genomics and potential as therapeutics[J]. Nat Rev Drug Discov, 2004, 3(4): 318-329.
[6]
Sanchez P, Hernández AM, Stecca B. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling[J]. Proc Natl Acad Sci USA, 2004, 101(34): 12561-12566.
[7]
Tao Y, Mao J, Zhang Q, et al. Overexpression of Hedgehog signaling molecules and its involvement in triple-negative breast cancer[J]. Oncol Lett, 2011, 2(5): 995-1001.
[8]
Braun S, Oppermann H, Mueller A, et al. Hedgehog signaling in glioblastoma multiforme[J]. Cancer Biol Ther, 2012, 13(7): 487-495.
[9]
Wang X, Venugopal C, Manoranjan B, et al. Sonic hedgehog regulates Bmi1 in human medulloblastoma brain tumor-initiating cells[J]. Oncogene, 2012, 31(2): 187-199.
[10]
Epstein DJ. Regulation of thalamic development by sonic hedgehog[J]. Front Neurosci, 2012, 6(4): 57.
[11]
Komada M. Sonic hedgehog signaling coordinates the proliferation and differentiation of neural stem/progenitor cells by regulating cell cycle kinetics during development of the neocortex[J]. Congenit Anom (Kyoto), 2012, 52(2): 72-77.
[12]
Colvin Wanshura LE, Galvin KE, Ye H, et al. Sequential activation of Snail1 and N-Myc modulates sonic hedgehog-induced transformation of neural cells[J]. Cancer Res, 2011,71(15): 5336-5345.
[13]
Wong H, Alicke B, West KA, et al. Pharmacokinetic-pharmacodynamic analysis of vismodegib in preclinical models of mutational and ligand-dependent Hedgehog pathway activation[J]. Clin Cancer Res, 2011, 17(14): 4682-4692.
[14]
Uchida H, Arita K, Yunoue S, et al. Role of sonic hedgehog signaling in migration of cell lines established from CD133-positive malignant glioma cells[J]. J Neurooncol, 2011, 104(3): 697-704.
[15]
Jagani Z, Mora-Blanco EL, Sansam CG, et al. Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog-Gli pathway[J]. Nat Med, 2010, 16(12): 1429-1433.
[1] 王晗宇, 张司可, 张羽, 万欣, 贺秋霞, 李明明, 杨秀华. 超声造影在脑胶质瘤切除术术中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 755-760.
[2] 王乙钦, 李顺, 曾小芳, 马志立, 许丽霞, 匡铭. 环状RNA circEIF6在肝细胞癌中的表达及功能研究[J]. 中华普通外科学文献(电子版), 2021, 15(04): 252-257.
[3] 顾志波, 郝林, 陆明, 陈建刚. 光动力纳米载体联合si-P3H4治疗膀胱癌的初步探索[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 633-641.
[4] 兰伟途, 武峰, 何建昌, 兰文达, 王万宏. miRNA-199a-5p靶向CDCA7L对胶质瘤细胞迁移及侵袭的影响[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(05): 272-278.
[5] 程亚飞, 任长远, 李海马, 孙恺, 马亚群. FSTL1基因在胶质瘤发展中作用的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 206-215.
[6] 余成龙, 刘静, 林帆, 张协军, 阳吉虎, 刘玉飞, 陈垒, 张玛莉, 蒋太鹏, 李维平, 黄国栋, 陈凡帆. 多学科诊疗门诊在神经肿瘤病例中的诊治效率评估[J]. 中华神经创伤外科电子杂志, 2022, 08(04): 229-235.
[7] 王志文, 王长峰, 王海江. 肉桂醛经HIF-1α抑制肿瘤的研究进展及展望[J]. 中华神经创伤外科电子杂志, 2022, 08(04): 247-251.
[8] 袁英淇, 闫润芝, 范益民. ATRX丢失与胶质瘤患者预后及IDH突变相关性的Meta分析[J]. 中华神经创伤外科电子杂志, 2022, 08(03): 161-167.
[9] 麦麦提力·米吉提, 李云雷, 吴昊, 李彦东, 沈宇晟, 吕明月, 朱国华. 弥散张量成像传导束重建技术指导高级别胶质瘤切除的临床研究[J]. 中华神经创伤外科电子杂志, 2022, 08(02): 101-105.
[10] 赵小玉, 李彦东, 吴昊, 范海, 吕明月, 沈宇晟, 盛成俊, 曾加, 吴徐超, 朱国华, 更·党木仁加甫. 外泌体miRNA在脑胶质瘤中的诊断、治疗和预后的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(06): 370-374.
[11] 娜迪热·依明, 崔红, 努尔比亚·牙生, 祖莱娅提·阿不都热依木, 祖丽凯麦尔·阿布拉江, 麦麦提力·米吉提. 胶质瘤的表观遗传学发展[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(05): 309-315.
[12] 向琰, 黄国浩, 杨伟, 刘国龙, 谢源, 吕胜青. 显微镜下黄荧光引导技术切除高级别脑胶质瘤[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(05): 319-320.
[13] 冯海涛, 徐涛, 刘文阳, 孙晨, 曹尚超. 三维动脉自旋标记联合动态对比增强MRI对脑胶质瘤术后复发及放射性脑坏死诊断的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 262-265.
[14] 张懿炜, 胡亚欣, 出良钊, 严昭, 曾茜, 蒲茜. CREB3通过下调FAK磷酸化水平抑制胶质瘤细胞增殖及侵袭转移的体外实验研究[J]. 中华临床医师杂志(电子版), 2023, 17(02): 202-209.
[15] 黄贞亮, 赵铎. 针刀治疗胶质瘤术后头痛案[J]. 中华针灸电子杂志, 2022, 11(04): 144-145.
阅读次数
全文


摘要