[1] |
Faden AI, Loane DJ. Chronic neurodegeneration after traumatic brain injury: Alzheimer disease, chronic traumatic encephalopathy, or persistent neuroinflammation[J]? Neurotherapeutics, 2015, 12(1): 143-150.
|
[2] |
Kumar A, Loane DJ. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention[J]. Brain Behav Immun, 2012, 26(8): 1191-1201.
|
[3] |
Butovsky O, Jedrychowski MP, Moore CS, et al. Identification of a unique TGF-beta dependent molecular and functional signature in microglia[J]. Nat Neurosci, 2014, 17(1): 131-143.
|
[4] |
Kierdorf K, Erny D, Goldmann T, et al. Microglia emerge from erythromyeloid precursors via Pu.1-and Irf8-dependent pathways[J]. Nat Neurosci, 2013, 16(3): 273-280.
|
[5] |
Elmore MR, Najafi AR, Koike MA, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain[J]. Neuron, 2014, 82(2): 380-397
|
[6] |
Loane DJ, Kumar A. Microglia in the TBI brain: The good, the bad, and the dysregulated[J]. Exp Neurol, 2016, 275 Pt 3: 316-327.
|
[7] |
Salter MW, Beggs S. Sublime microglia: expanding roles for the guardians of the CNS[J]. Cell, 2014, 158(1): 15-24.
|
[8] |
Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain[J]. Nat Neurosci,2007, 10(11): 1387-1394.
|
[9] |
Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas[J]. J Clin Invest, 2012, 122(3): 787-795.
|
[10] |
Colton CA. Heterogeneity of microglial activation in the innate immune response in the brain[J]. J NeuroImmune Pharmacol, 2009, 4(4): 399-418.
|
[11] |
Filardy AA, Pires DR, Nunes MP, et al. Proinflammatory clearance of apoptotic neutrophils induces an IL-12(low)IL-10(high) regulatory phenotype in macrophages[J]. J. Immunol, 2010, 185(4): 2044-2050.
|
[12] |
Novak ML, Koh TJ. Phenotypic transitions of macrophages orchestrate tissue repair[J]. Am J Pathol, 2013, 183(1): 1352-1363.
|
[13] |
Ziebell JM, Morganti-Kossmann MC. Involvement of pro- and antiinflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury[J]. Neurotherapeutics, 2010, 7(1): 22-30.
|
[14] |
Rhodes J. Peripheral immune cells in the pathology of traumatic brain injury[J]? Curr Opin Crit Care, 2011, 17(2): 122-130.
|
[15] |
Auffray C, Fogg D, Garfa M, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior[J]. Science, 2007, 317: 666-670.
|
[16] |
Hsieh CL, Kim CC, Ryba BE, et al. Traumatic brain injury induces macrophage subsets in the brain[J]. Eur J Immunol, 2013, 43(8): 2010-2022.
|
[17] |
Walsh JT, Watson N, Kipnis J. T cells in the central nervous system: messengers of destruction or purveyors of protection[J]? Immunology, 2014, 141(3): 340-344.
|
[18] |
Acosta SA, Tajiri N, Shinozuka K, et al. Long-term upregulation of inflammation and suppression of cell proliferation in the brain of adult rats exposed to traumatic brain injury using the controlled cortical impact model[J]. PLoS One, 2013, 8(1): e53376.
|
[19] |
Loane DJ, Kumar A, Stoica BA, et al. Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation[J]. J Neuropathol Exp Neurol, 2014, 73: 14-29.
|
[20] |
Mouzon BC, Bachmeier C, Ferro A, et al. Chronic neuropathological and neurobehavioral changes in a repetitive mild traumatic brain injury model[J]. Ann Neurol, 2014, 75(2): 241-254.
|
[21] |
Hu X, Li P, Guo Y, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansionafter focal cerebral ischemia[J]. Stroke, 2012, 43(1): 3063-3070.
|
[22] |
Kigerl KA, Gensel JC, Ankeny DP, et al. Identification of two distinct macrophage subsets with divergent effects causing eitherneurotoxicity or regeneration in the injured mouse spinal cord[J]. J Neurosci, 2009, 29: 13435-13444.
|
[23] |
Jin X, Ishii H, Bai Z, et al. Temporal changes in cell marker expression and cellular infiltration in a controlled cortical impact model in adult male C57BL/6 mice[J]. PLoS One, 2012, 7: e41892.
|
[24] |
Wang, G, Zhang J, Hu X, et al. Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J. Cereb[J]. Blood Flow Metab, 2013, 33(12): 1864-1874.
|
[25] |
Morganti JM, Jopson TD, Liu S, et al. CCR2 antagonism alters brain macrophage polarization and ameliorates cognitive dysfunction induced by traumatic brain injury[J]. J Neurosci, 2015, 35(2): 748-760.
|
[26] |
Dalgard CL, Cole JT, Kean WS, et al. The cytokine temporal profile in rat cortex after controlled cortical impact[J]. Front Mol Neurosci, 2012, 5: 6.
|
[27] |
Hsieh CL, Niemi EC, Wang SH, et al. CCR2 deficiency impairs macrophage infiltration and improves cognitive function after traumatic brain injury[J]. J Neurotrauma, 2014, 31(20): 1677-1688.
|
[28] |
Gensel JC, Zhang B. Macrophage Activation and its Role in Repair and Pathology After Spinal Cord Injury[J]. Brain Res, 2015, 1619: 1-11.
|
[29] |
Fenn AM, Gensel JC, Huang Y, et al. Immune activation promotes depression 1 month after diffuse brain injury: a role for primed microglia[J]. Biol Psychiatry, 2014, 76(7): 575-584.
|
[30] |
Tam WY, Ma CH. Bipolar/rod-shaped microglia are proliferating microglia with distinct M1/M2 phenotypes[J]. Sci Rep, 2014, 4: 7279.
|
[31] |
Kumar A, Stoica BA, Sabirzhanov B, et al. Traumatic brain injury in aged animals increases lesion size and chronically alters microglial/macrophage classical and alternative activation states[J]. Neurobiol Aging, 2013, 34(5): 1397-1411.
|
[32] |
Norden DM, Muccigrosso MM, Godbout JP. Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury and neurodegenerative disease[J]. Neuropharmacology, 2015, 96(Pt A): 29-41.
|
[33] |
Wilcock DM. Neuroinflammatory phenotypes and their roles in Alzheimer’s disease[J]. Neurodegener Dis, 2014, 13(2-3): 183-185.
|
[34] |
Fenn AM, Hall JC, Gensel JC, et al. IL-4 signaling drives a unique arginase+/IL-1beta+ microglia phenotype and recruits macrophages to the inflammatory CNS: consequences of age-related deficits in IL-4Ralpha after traumatic spinal cord injury[J]. J Neurosci, 2014, 34(26): 8904-8917.
|
[35] |
Ekdahl CT, Kokaia Z, Lindvall O. Brain inflammation and adult neurogenesis: the dual role of microglia[J]. Neuroscience, 2009, 158(3):1021-1029.
|
[36] |
Choi YS, Cho HY, Hoyt KR, et al. IGF-1 receptor-mediated ERK/MAPK signaling couples status epilepticus to progenitor cell proliferation in the subgranular layer of the dentate gyrus[J]. Glia 2008, 56(7): 791-800.
|
[37] |
Gao X, Chen J. Moderate traumatic brain injury promotes neural precursor proliferation without increasing neurogenesis in the adult hippocampus[J]. Exp Neurol, 2013. 239: 38-48.
|
[38] |
Carlson SW, Madathil SK, Sama DM, et al. Conditional overexpression of insulin-like growth factor-1 enhances hippocampal neurogenesis and restores immature neuron dendritic processes after traumatic brain injury[J]. J Neuropathol Exp Neurol, 2014, 73(8): 734-746.
|
[39] |
Jetten N, Verbruggen S, Gijbels MJ, et al. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo[J]. Angiogenesis, 2014, 17: 109-118.
|
[40] |
Zajac E, Schweighofer B, Kupriyanova TA, et al. Angiogenic capacity of M1- and M2-polarized macrophages is determined by the levels of TIMP-1 complexed with their secreted proMMP-9[J]. Blood, 2013, 122(5): 4054-4067.
|
[41] |
Wang G, Shi Y, Jiang X, et al. HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3beta/PTEN/Akt axis[J]. Proc Natl Acad Sci USA, 2015, 112(9): 2853-2858.
|
[42] |
Hooten KG, Beers DR, Zhao W, et al. Protective and toxic neuroinflammation in amyotrophic lateral sclerosis. neurotherapeutics[J]. 2015;12(2):364-75.
|
[43] |
Ma SF, Chen YJ, Zhang JX, et al. Adoptive transfer of M2 macrophages promotes locomotor recovery in adult rats after spinal cord injury[J]. Brain Behav Immun, 2015, 45: 157-170
|
[44] |
Gao S, Mao F, Zhang B, et al. Mouse bone marrow-derived mesenchymal stem cells induce macrophage M2 polarization through the nuclear factor-kappaB and signal transducer and activator of transcription 3 pathways[J]. Exp Biol Med, 2014, 239(3): 366-375.
|
[45] |
Thal SC, Heinemann M, Luh C, et al. Pioglitazone reduces secondary brain damage after experimental brain trauma by PPAR-gammaindependent mechanisms[J]. J Neurotrauma, 2011, 28(6): 983-993.
|
[46] |
Loane DJ, Stoica BA, Byrnes KR, et al. Activation of mGluR5 and inhibition of NADPH oxidase improves functional recovery after traumatic brain injury[J]. J Neurotrauma, 2013, 30(5): 403-412.
|
[47] |
Wang G, Shi Y, Jiang X, et al. HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3beta/PTEN/Akt axis[J]. Proc Natl Acad Sci USA, 2015, 112(9): 2853-2858.
|