[1] |
Nicaise C, Mitrecic D, Falnikar A, et al. Transplantation of stem cell-derivedastrocytes for the treatment of amyotrophic lateral sclerosis and spinal cord injury[J]. World J Stem Cells, 2015, 7(2): 380-398.
|
[2] |
Kaya R A, Çavusoglu H, Tanlk C, et al. Spinal cord compression caused by a brown tumor at the cervicothoracic junction[J]. Spine J, 2007, 7(6): 728-732.
|
[3] |
Chen H Y, Boore J R P. Living with a spinal cord injury: a grounded theory approach[J]. J ClinNurs, 2008, 17(5A): 116-24.
|
[4] |
Lan C, Lai JS, Chang KH, et al. Traumatic spinal cord injuries in the rural region of Taiwan: an epidemiological study in Hualien county, 1986-1990[J]. Paraplegia, 1993, 31(6): 398-403.
|
[5] |
Chiu WT, Lin HC, Lam C, et al. Review paper: epidemiology of traumatic spinal cord injury: comparisons between developed and developing countries[J]. Asia Pac J Public Health, 2010, 22(1): 9-18.
|
[6] |
Stevens R D, Bhardwaj A, Kirsch J R, et al. Critical care and perioperative management in traumatic spinal cord injury[J]. J NeurosurgAnesthesiol, 2003, 15(3): 215-229.
|
[7] |
Yang NP, Deng CY, Lee YH, et al. The incidence and characterisation of hospitalised acute spinal trauma in Taiwan--a population-based study.[J]. Injury, 2008, 39(4): 443-450.
|
[8] |
Chen HY, Chen SS, Chiu WT, et al. A nationwide epidemiological study of spinal cord injury in geriatric patients in Taiwan[J]. Neuroepidemiology, 1997, 16(5): 241-247.
|
[9] |
Frankel HL, Coll JR, Charlifue SW, et al. Long-term survival in spinal cord injury: a fifty year investigation[J]. Spinal Cord, 1998, 36(4): 266-274.
|
[10] |
Amin A, Bernard J, Nadarajah R, et al. Spinal injuries admitted to a specialist centre over a 5-year period: a study to evaluate delayed admission[J]. Spinal Cord, 2005, 43(7): 434-437.
|
[11] |
Christensen MD, Hulsebosch CE. Chronic central pain after spinal cord injury[J]. J Neurotrauma, 1997, 14(8): 517-537.
|
[12] |
Tator CH. Biology of neurological recovery and functional restoration after spinal cord injury[J]. Neurosurgery, 1998, 42(4): 696-707.
|
[13] |
Tator CH. Experimental and clinical studies of the pathophysiology and management of acute spinal cord injury[J]. J Spinal Cord Med, 1996, 19(4): 206-214.
|
[14] |
Carlson GD, Gorden C. Current developments in spinal cord injury research[J]. Spine J, 2002, 2(2): 116-128.
|
[15] |
Tator CH. Update on the pathophysiology and pathology of acute spinal cord injury[J]. Brain Pathol, 1995, 5(4): 407-413.
|
[16] |
Dong H, Fazzaro A, Xiang C, et al. Enhanced oligodendrocyte survival after spinal cord injury in Bax-deficient mice and mice with delayed Wallerian degeneration[J]. J Neurosci, 2003, 23(25): 8682-8691.
|
[17] |
Faulkner J R, Herrmann JE, Woo MJ, et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury[J]. J Neurosci, 2004, 24(9): 2143-2155.
|
[18] |
Ditor DS, Hamilton S, Tarnopolsky MA, et al. Na+, K+-ATPase concentration and fiber type distribution after spinal cord injury[J]. Muscle Nerve, 2004, 29(1): 38-45.
|
[19] |
Kaptanoglu E, Solaroglu I, Okutan O, et al. Erythropoietin exerts neuroprotection after acute spinal cord injury in rats: effect on lipid peroxidation and early ultrastructural findings[J]. Neurosurg Rev, 2004, 27(2): 113-120.
|
[20] |
Guest J, Eleraky MA, Apostolides PJ, et al. Traumatic central cord syndrome: results of surgical management[J]. J Neurosurg, 2002, 97(1): 25-32.
|
[21] |
Management of acute central cervical spinal cord injuries[J]. Neurosurgery, 2002, 50(3): S166-S172.
|
[22] |
Geisler FH, Coleman WP, Grieco G, et al. Recruitment and early treatment in a multicenter study of acute spinal cord injury[J]. Spine, 2001, 26(24S): S58-S67.
|
[23] |
Geisler FH, Coleman WP, Grieco G, et al. The Sygen multicenter acute spinal cord injury study[J]. Spine, 2001, 26(24S): S87-S98.
|
[24] |
Giger RJ, Venkatesh K, Chivatakarn O, et al. Mechanisms of CNS myelin inhibition: evidence for distinct and neuronal cell type specific receptor systems[J]. RestorNeurolNeurosci, 2008, 26(2-3): 97-115.
|
[25] |
Di Giovanni S. Molecular targets for axon regeneration: focus on the intrinsic pathways[J]. Expert OpinTher Targets, 2009, 13(12): 1387-1398.
|
[26] |
Yiu G, He Z. Glial inhibition of CNS axon regeneration[J]. Nat Rev Neurosci, 2006, 7(8): 617-627.
|
[27] |
Chiang AP, Beck JS, Yen HJ, et al. Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet–Biedl syndrome gene (BBS11)[J]. Proc Natl AcadSci, 2006, 103(16): 6287-6292.
|
[28] |
Kano S, Miyajima N, Fukuda S, et al. Tripartite motif protein 32 facilitates cell growth and migration via degradation of Abl-interactor 2[J]. Cancer Res, 2008, 68(14): 5572-5580.
|
[29] |
Fridell RA, Harding LS, Bogerd HP, et al. Identification of a novel human zinc finger protein that specifically interacts with the activation domain of lentiviral Tat proteins[J]. Virology, 1995, 209(2): 347-357.
|
[30] |
Reymond A, Meroni G, Fantozzi A, et al. The tripartite motif family identifies cell compartments[J]. EMBO J, 2001, 20(9): 2140-2151.
|
[31] |
Kudryashova E, Kudryashov D, Kramerova I, et al. Trim32 is a ubiquitin ligase mutated in limb girdle muscular dystrophy type 2H that binds to skeletal muscle myosin and ubiquitinatesactin[J]. J MolBiol, 2005, 354(2): 413-424.
|
[32] |
Kudryashova E, Wu J, Havton LA, et al. Deficiency of the E3 ubiquitin ligase TRIM32 in mice leads to a myopathy with a neurogenic component[J]. Hum Mol Genet, 2009, 18(7): 1353-1367.
|
[33] |
Locke M, Tinsley CL, Benson MA, et al. TRIM32 is an E3 ubiquitin ligase for dysbindin[J]. Hum Mol Genet, 2009, 18(13): 2344-2358.
|
[34] |
Lee CY, Robinson KJ, Doe CQ. Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation[J]. Nature, 2006, 439(7076): 594-598.
|
[35] |
Knoblich JA. Mechanisms of asymmetric stem cell division[J]. Cell, 2008, 132(4): 583-597.
|
[36] |
Rolls MM, Albertson R, Shih HP, et al. Drosophila aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia[J]. J Cell Biol, 2003, 163(5): 1089-1098.
|
[37] |
Betschinger J, Mechtler K, Knoblich JA. Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells[J]. Cell, 2006, 124(6): 1241-1253.
|
[38] |
Treier M, Staszewski LM, Bohmann D. Ubiquitin-dependent c-Jun degradation in vivo is mediated by the δ domain[J]. Cell, 1994, 78(5): 787-798.
|
[39] |
Yu F, Yao H, Zhu P, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells[J]. Cell, 2007, 131(6): 1109-1123.
|
[40] |
Peng Y, Laser J, Shi G, et al. Antiproliferative effects by Let-7 repression of high-mobility group A2 in uterine leiomyoma[J]. Mol Cancer Res, 2008, 6(4): 663-673.
|
[41] |
Johnson C D, Esquela-Kerscher A, Stefani G, et al. The let-7 microRNA represses cell proliferation pathways in human cells[J]. Cancer Res, 2007, 67(16): 7713-7722.
|
[42] |
Glaser T, Brüstle O. Retinoic acid induction of ES-cell-derived neurons: the radial glia connection[J]. Trends Neurosci, 2005, 28(8): 397-400.
|
[43] |
Weston A D, Blumberg B, Underhill TM. Active repression by unliganded retinoid receptors in development less is sometimes more[J]. J Cell Biol, 2003, 161(2): 223-228.
|
[44] |
Sato T, Okumura F, Kano S, et al. TRIM32 promotes neural differentiation through retinoic acid receptor-mediated transcription[J]. J Cell Sci, 2011, 124(Pt 20): 3492-3502.
|
[45] |
Schwamborn JC, Berezikov E, Knoblich J A. The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors[J]. Cell, 2009, 136(5): 913-925.
|