[1] |
Taylor LP. Diagnosis, treatment, and prognosis of glioma: five new things[J]. Neurology, 2010, 75(18 Suppl 1): 28-32.
|
[2] |
Stiles CD, Rowitch DH. Glioma stem cells: a midterm exam[J]. Neuron, 2008, 58(6): 832-846.
|
[3] |
Marumoto T, Saya H. Molecular biology of glioma[J]. Adv Exp Med Biol, 2012, 746(10): 2-11.
|
[4] |
Ahmed AU, Auffinger B, Lesniak MS. Understanding glioma stem cells: rationale, clinical relevance and therapeutic strategies[J]. Expert Rev Neurother, 2013, 13(5): 545-555.
|
[5] |
Loew S, Schmidt U, Unterberg A, et al. The epidermal growth factor receptor as a therapeutic target in glioblastoma multiforme and other malignant neoplasms[J]. Anticancer Agents Med Chem, 2009, 9(6): 703-715.
|
[6] |
Abel T W, Clark C, Bierie B, et al. GFAP-Cre-mediated activation of oncogenic K-ras results in expansion of the subventricular zone and infiltrating glioma[J]. Mol Cancer Res, 2009, 7(5): 645-653.
|
[7] |
Santoni M, Burattini L, Nabissi M, et al. Essential role of Gli proteins in glioblastoma multiforme[J]. Curr Protein Pept Sci, 2013, 14(2): 133-140.
|
[8] |
Chang KW, Huang YL, Wong ZR, et al. Fibroblast growth Ras-Raf-ERK-Sp1 signaling axis in C6 glioma cells[J]. Biochem Biophys Res Commun, 2013, 434(4): 854-860.
|
[9] |
Wakahara K, Kobayashi H, Yagyu T, et al. Bikunin down-regulates heterodimerization between CD44 and growth factor receptors and subsequently suppresses agonist-mediated signaling[J]. J Cell Biochem, 2005, 94(5): 995-1009.
|
[10] |
Benezra M, Hambardzumyan D, Penate-Medina O, et al. Fluorine-labeled dasatinib nanoformulations as targeted molecular imaging probes in a PDGFB-driven murine glioblastoma model[J]. Neoplasia, 2012, 14(12): 1132-1143.
|
[11] |
Nazarenko I, Hede SM, He X, et al. PDGF and PDGF receptors in glioma[J]. Ups J Med Sci, 2012, 117(2): 99-112.
|
[12] |
Peoch M, Farion R, Hiou A, et al. Immunohistochemical study of VEGF, angiopoietin 2 and their receptors in the neovascularization following microinjection of C6 glioma cells into rat brain[J]. Anticancer Res, 2002, 22(4): 2147-2151.
|
[13] |
Sharma PS, Sharma R, Tyagi T. VEGF/VEGFR pathway inhibitors as anti-angiogenic agents: present and future[J]. Curr Cancer Drug Targets, 2011, 11(5): 624-653.
|
[14] |
Macas J, Ku M C, Nern C, et al. Generation of neuronal progenitor cells in response to tumors in the human brain[J]. Stem Cells, 2014, 32(1): 244-257.
|
[15] |
Kim JH, Shin HS, Lee SH, et al. Contrasting activity of Hedgehog and Wnt pathways according to gastric cancer cell differentiation: relevance of crosstalk mechanisms[J]. Cancer Sci, 2010, 101(2): 328-335.
|
[16] |
Santoni M, Burattini L, Nabissi M, et al. Essential role of Gli proteins in glioblastoma multiforme[J]. Curr Protein Pept Sci, 2013, 14(2): 133-140.
|
[17] |
Natsume A, Kinjo S, Yuki K, et al. Glioma-initiating cells and molecular pathology: implications for therapy[J]. Brain Tumor Pathol, 2011, 28(1): 1-12.
|
[18] |
Remke M, Ramaswamy V, Taylor MD. Medulloblastoma molecular dissection: the way toward targeted therapy [J]. Curr Opin Oncol, 2013, 25(6): 674-681.
|
[19] |
Rao G, Pedone CA, Coffin CM, et al. c-Myc enhances sonic hedgehog-induced medulloblastoma formation from nestin-expressing neural progenitors in mice[J]. Neoplasia, 2003, 5(3): 198-204.
|
[20] |
Becher OJ, Hambardzumyan D, Fomchenko EI, et al. Gli activity correlates with tumor grade in platelet-derived growth factor-induced gliomas[J]. Cancer Res, 2008, 68(7): 2241-2249.
|
[21] |
Yan GN, Lv YF, Yang L, et al. Glioma stem cells enhance endothelial cell migration and proliferation via the Hedgehog pathway[J]. Oncol Lett, 2013, 6(5): 1524-1530.
|
[22] |
Wang J, Wakeman TP, Lathia JD, et al. Notch promotes radioresistance of glioma stem cells[J]. Stem Cells, 2010, 28(1): 17-28.
|
[23] |
Wang L, Liu Z, Balivada S, et al. Interleukin-1beta and transforming growth factor-beta cooperate to induce neurosphere formation and increase tumorigenicity of adherent LN-229 glioma cells[J]. Stem Cell Res Ther, 2012, 3(1): 5.
|
[24] |
Ulasov IV, Nandi S, Dey M, et al. Inhibition of Sonic hedgehog and Notch pathways enhances sensitivity of CD133(+) glioma stem cells to temozolomide therapy[J]. Mol Med, 2011, 17 (1-2): 103-112.
|
[25] |
Jin X, Kim SH, Jeon HM, et al. Interferon regulatory factor 7 regulates glioma stem cells via interleukin-6 and Notch signalling[J]. Brain, 2012, 135(Pt 4): 1055-1069.
|
[26] |
Yu SC, Xiao HL, Jiang XF, et al. Connexin 43 reverses malignant phenotypes of glioma stem cells by modulating E-cadherin[J]. Stem Cells, 2012, 30(2): 108-120.
|
[27] |
Sandberg CJ, Altschuler G, Jeong J, et al. Comparison of glioma stem cells to neural stem cells from the adult human brain identifies dysregulated Wnt- signaling and a fingerprint associated with clinical outcome[J]. Exp Cell Res, 2013, 319(14): 2230-2243.
|
[28] |
Liu S, Yin F, Zhang J, et al. Regulatory roles of miRNA in the human neural stem cell transformation to glioma stem cells[J]. J Cell Biochem, 2014, 115(8): 1368-1380
|
[29] |
Gong A, Huang S. FoxM1 and Wnt/beta-catenin signaling in glioma stem cells[J]. Cancer Res, 2012, 72(22): 5658-5662.
|
[30] |
Jiang X, Yu Y, Yang HW, et al. The imprinted gene PEG3 inhibits Wnt signaling and regulates glioma growth[J]. J Biol Chem, 2010, 285(11): 8472-8480.
|
[31] |
Jin X, Jeon HY, Joo KM, et al. Frizzled 4 regulates stemness and invasiveness of migrating glioma cells established by serial intracranial transplantation[J]. Cancer Res, 2011, 71(8): 3066-3075.
|
[32] |
Nakano I, Saigusa K, Kornblum HI. BMPing off glioma stem cells[J]. Cancer Cell, 2008, 13(1): 3-4.
|
[33] |
Piccirillo SG, Reynolds BA, Zanetti N, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells[J]. Nature, 2006, 444(7120): 761-765.
|
[34] |
Piccirillo SG, Vescovi AL. Bone morphogenetic proteins regulate tumorigenicity in human glioblastoma stem cells[J]. Ernst Schering Found Symp Proc, 2006, (5): 59-81.
|