| [1] |
Bahouth MN, Deluzio S, Pruski A, et al. Nonpharmacological treatments for hospitalized patients with stroke: a nuanced approach to prescribing early activity[J]. Neurotherapeutics, 2023, 20(3): 712-720. DOI: 10.1007/s13311-023-01392-2.
|
| [2] |
Bautista W, Adelson PD, Bicher N, et al. Secondary mechanisms of injury and viable pathophysiological targets in intracerebral hemorrhage[J]. Ther Adv Neurol Disord, 2021, 14: 17562864211049208. DOI: 10.1177/17562864211049208.
|
| [3] |
Zhang C, Zhang S, Yin Y, et al. Clot removal with or without decompressive craniectomy under ICP monitoring for supratentorial intracerebral hemorrhage (CARICH): a randomized controlled trial[J]. Int J Surg, 2024, 110(8): 4804-4809. DOI: 10.1097/js9.0000000000001466.
|
| [4] |
Chen D, Chen Z, Yuan J, et al. Research landscape and trends of human umbilical cord mesenchymal stem cell-derived exosomes[J]. Stem Cell Res Ther, 2025, 16(1): 259. DOI: 10.1186/s13287-025-04379-2.
|
| [5] |
Han X, Liao R, Li X, et al. Mesenchymal stem cells in treating human diseases: molecular mechanisms and clinical studies[J]. Signal Transduct Target Ther, 2025, 10(1): 262. DOI: 10.1038/s41392-025-02313-9.
|
| [6] |
Wang W, Qiao S, Kong X, et al. The role of exosomes in immunopathology and potential therapeutic implications[J]. Cell Mol Immunol, 2025, 22(9): 975-995. DOI: 10.1038/s41423-025-01323-5.
|
| [7] |
Li N, Liu X, Wang Q, et al. hUC-MSCs and derived exosomes attenuate DEX-induced muscle atrophy through modulation of estrogen signaling pathway[J]. Stem Cell Res Ther, 2025, 16(1): 419. DOI: 10.1186/s13287-025-04328-z.
|
| [8] |
Wang Y, Kong Y, Du J, et al. Injection of human umbilical cord mesenchymal stem cells exosomes for the treatment of knee osteoarthritis: from preclinical to clinical research[J]. J Transl Med, 2025, 23(1): 641. DOI: 10.1186/s12967-025-06623-y.
|
| [9] |
Cao L, Pi W, Zhang Y, et al. Targeting the NLRP3-ROS axis: disrupting the oxidative-inflammatory vicious cycle in intracerebral hemorrhage[J]. J Inflamm Res, 2025, 18: 9849-9870. DOI: 10.2147/jir.S529884.
|
| [10] |
Ning W, Lyu S, Wang Q, et al. The pivotal role of microglia in injury and the prognosis of subarachnoid hemorrhage[J]. Neural Regen Res, 2025, 20(7): 1829-1848. DOI: 10.4103/nrr.Nrr-d-24-00241.
|
| [11] |
Wang XY, Wu F, Zhan RY, et al. Inflammatory role of microglia in brain injury caused by subarachnoid hemorrhage[J]. Front Cell Neurosci, 2022, 16: 956185. DOI: 10.3389/fncel.2022.956185.
|
| [12] |
|
| [13] |
Karuppagounder SS, Alim I, Khim SJ, et al. Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models[J]. Sci Transl Med, 2016, 8(328): 328ra329. DOI: 10.1126/scitranslmed.aac6008.
|
| [14] |
Song D, Ji YB, Huang XW, et al. Lithium attenuates blood-brain barrier damage and brain edema following intracerebral hemorrhage via an endothelial Wnt/β-catenin signaling-dependent mechanism in mice[J]. CNS Neurosci Ther, 2022, 28(6): 862-872. DOI: 10.1111/cns.13832.
|
| [15] |
Zhang Y, Khan S, Liu Y, et al. Oxidative stress following intracerebral hemorrhage: from molecular mechanisms to therapeutic targets[J]. Front Immunol, 2022, 13: 847246. DOI: 10.3389/fimmu.2022.847246.
|
| [16] |
Li X, Chen G. CNS-peripheral immune interactions in hemorrhagic stroke[J]. J Cereb Blood Flow Metab, 2023, 43(2): 185-197. DOI: 10.1177/0271678x221145089.
|
| [17] |
Wan Y, Holste KG, Hua Y, et al. Brain edema formation and therapy after intracerebral hemorrhage[J]. Neurobiol Dis, 2023, 176: 105948. DOI: 10.1016/j.nbd.2022.105948.
|
| [18] |
Nombela-Arrieta C, Ritz J, Silberstein LE. The elusive nature and function of mesenchymal stem cells[J]. Nat Rev Mol Cell Biol, 2011, 12(2): 126-131. DOI: 10.1038/nrm3049.
|
| [19] |
Cozene B, Sadanandan N, Farooq J, et al. Mesenchymal stem cell-induced anti-neuroinflammation against traumatic brain injury[J]. Cell Transplant, 2021, 30: 9636897211035715. DOI: 10.1177/09636897211035715.
|
| [20] |
Chin SP, Abd Rahim ENA, Nor Arfuzir NN. Neuroprotective effects of human umbilical cord mesenchymal stem cells (Neuroncell-EX) in a rat model of ischemic stroke are mediated by immunomodulation, blood-brain barrier integrity, angiogenesis, and neurogenesis[J]. In Vitro Cell Dev Biol Anim, 2025, 61(4): 389-402. DOI: 10.1007/s11626-025-01037-y.
|
| [21] |
Li X, Tan J, Xiao Z, et al. Transplantation of hUC-MSCs seeded collagen scaffolds reduces scar formation and promotes functional recovery in canines with chronic spinal cord injury[J]. Sci Rep, 2017, 7: 43559. DOI: 10.1038/srep43559.
|
| [22] |
Zhang A, Zhang Z, Liu R, et al. Human umbilical cord mesenchymal stem cell-derived exosomes inhibit inflammation and fibrotic scar formation after intracerebral hemorrhage[J]. Mol Cell Biochem, 2025, 480(8): 4829-4847. DOI: 10.1007/s11010-025-05259-2.
|
| [23] |
Liu X, Wei Q, Lu L, et al. Immunomodulatory potential of mesenchymal stem cell-derived extracellular vesicles: targeting immune cells[J]. Front Immunol, 2023, 14: 1094685. DOI: 10.3389/fimmu.2023.1094685.
|
| [24] |
Xie Q, Liu R, Jiang J, et al. What is the impact of human umbilical cord mesenchymal stem cell transplantation on clinical treatment?[J]. Stem Cell Res Ther, 2020, 11(1): 519. DOI: 10.1186/s13287-020-02011-z.
|
| [25] |
Chen S, Zhang W, Wang JM, et al. Differentiation of isolated human umbilical cord mesenchymal stem cells into neural stem cells[J]. Int J Ophthalmol, 2016, 9(1): 41-47. DOI: 10.18240/ijo.2016.01.07.
|
| [26] |
Koh HB, Kim HJ, Kang SW, et al. Exosome-based drug delivery: translation from bench to clinic[J]. Pharmaceutics, 2023, 15(8): 2042. DOI: 10.3390/pharmaceutics15082042.
|
| [27] |
Chen YF, Luh F, Ho YS, et al. Exosomes: a review of biologic function, diagnostic and targeted therapy applications, and clinical trials[J]. J Biomed Sci, 2024, 31(1): 67. DOI: 10.1186/s12929-024-01055-0.
|
| [28] |
Yin S, Ji C, Wu P, et al. Human umbilical cord mesenchymal stem cells and exosomes: bioactive ways of tissue injury repair[J]. Am J Transl Res, 2019, 11(3): 1230-1240.
|
| [29] |
Cha ZH, Li Y, Pu JN, et al. Exosome-mediated repair of spinal cord injury: cellular sources, mechanisms of action, and combined therapeutic strategies[J]. Front Neurol, 2025, 16: 1645457. DOI: 10.3389/fneur.2025.1645457.
|
| [30] |
Li S, Li Y, Zhu K, et al. Exosomes from mesenchymal stem cells: potential applications in wound healing[J]. Life Sci, 2024, 357: 123066. DOI: 10.1016/j.lfs.2024.123066.
|
| [31] |
Xiao S, Lv Y, Hou X, et al. hUC-MSC extracellular vesicles protect against hypoxic-ischemic brain injury by promoting NLRP3 ubiquitination[J]. Biomol Biomed, 2025, 25(7): 1553-1570. DOI: 10.17305/bb.2024.10706.
|
| [32] |
Iranpanah A, Kooshki L, Moradi SZ, et al. The exosome-mediated PI3K/Akt/mTOR signaling pathway in neurological diseases[J]. Pharmaceutics, 2023, 15(3): 1006. DOI: 10.3390/pharmaceutics15031006.
|
| [33] |
Liu MW, Li H, Xiong GF, et al. Mesenchymal stem cell exosomes therapy for the treatment of traumatic brain injury: mechanism, progress, challenges and prospects[J]. J Transl Med, 2025, 23(1): 427. DOI: 10.1186/s12967-025-06445-y.
|
| [34] |
Gu J, Jin ZS, Wang CM, et al. Bone marrow mesenchymal stem cell-derived exosomes improves spinal cord function after injury in rats by activating autophagy[J]. Drug Des Devel Ther, 2020, 14: 1621-1631. DOI: 10.2147/dddt.S237502.
|
| [35] |
Tang L, Xu Y, Wang L, et al. Adipose-derived stem cell exosomes ameliorate traumatic brain injury through the NLRP3 signaling pathway[J]. Neuroreport, 2023, 34(13): 677-684. DOI: 10.1097/WNR.0000000000001941.
|