| [1] |
Kawala-Sterniuk A, Browarska N, Al-Bakri A, et al. Summary of over fifty years with brain-computer interfaces-a review[J]. Brain Sci, 2021, 11(1): 43. DOI: 10.3390/brainsci11010043.
|
| [2] |
Gao X, Wang Y, Chen X, et al. Interface, interaction, and intelligence in generalized brain-computer interfaces[J]. Trends Cogn Sci, 2021, 25(8): 671-684. DOI: 10.1016/j.tics.2021.04.003.
|
| [3] |
Chen Y, Zhang G, Guan L, et al. Progress in the development of a fully implantable brain-computer interface: the potential of sensing-enabled neurostimulators[J]. Natl Sci Rev, 2022, 9(10): nwac099. DOI: 10.1093/nsr/nwac099.
|
| [4] |
Rapeaux AB, Constandinou TG. Implantable brain machine interfaces: first-in-human studies, technology challenges and trends[J]. Curr Opin Biotechnol, 2021, 72: 102-111. DOI: 10.1016/j.copbio.2021.10.001.
|
| [5] |
Patrick-Krueger KM, Burkhart I, Contreras-Vidal JL. The state of clinical trials of implantable brain-computer interfaces[J]. Nat Rev Bioeng, 2025, 3(1): 50-67. DOI: 10.1038/s44222-024-00239-5.
|
| [6] |
Okun MS. Deep-brain stimulation for Parkinson's disease[J]. N Engl J Med, 2012, 367(16): 1529-1538. DOI: 10.1056/NEJMct1208070.
|
| [7] |
Mathiopoulou V, Lofredi R, Feldmann LK, et al. Modulation of subthalamic beta oscillations by movement, dopamine, and deep brain stimulation in Parkinson's disease[J]. NPJ Parkinsons Dis, 2024, 10(1): 77. DOI: 10.1038/s41531-024-00693-3.
|
| [8] |
Jarosiewicz B, Morrell M. The RNS system: Brain-responsive neurostimulation for the treatment of epilepsy[J]. Expert Rev Med Devices, 2021, 18(2): 129-138. DOI: 10.1080/17434440.2019.1683445.
|
| [9] |
Hariz M, Blomstedt P. Deep brain stimulation for Parkinson's disease[J]. J Intern Med, 2022, 292(5): 764-778. DOI: 10.1111/joim.13541.
|
| [10] |
Skrehot HC, Englot DJ, Haneef Z. Neuro-stimulation in focal epilepsy: a systematic review and meta-analysis[J]. Epilepsy Behav, 2023, 142: 109182. DOI: 10.1016/j.yebeh.2023.109182.
|
| [11] |
Fan H, Zheng Z, Yin Z, et al. Deep brain stimulation treating dystonia: a systematic review of targets, body distributions and etiology classifications[J]. Front Hum Neurosci, 2021, 15: 757579. DOI: 10.3389/fnhum.2021.757579.
|
| [12] |
Cernera S, Alcantara JD, Opri E, et al. Wearable sensor-driven responsive deep brain stimulation for essential tremor[J]. Brain Stimul, 2021, 14(6): 1434-1443. DOI: 10.1016/j.brs.2021.09.002.
|
| [13] |
Ben-Shlomo Y, Darweesh S, Llibre-Guerra J, et al. The epidemiology of Parkinson's disease[J]. Lancet, 2024, 403(10423): 283-292. DOI: 10.1016/s0140-6736(23)01419-8.
|
| [14] |
Morris HR, Spillantini MG, Sue CM, et al. The pathogenesis of Parkinson's disease[J]. Lancet, 2024, 403(10423): 293-304. DOI: 10.1016/s0140-6736(23)01478-2.
|
| [15] |
Malek N. Deep brain stimulation in Parkinson's disease[J]. Neurol India, 2019, 67(4): 968-978. DOI: 10.4103/0028-3886.266268.
|
| [16] |
Bucur M, Papagno C. Deep brain stimulation in Parkinson disease: a meta-analysis of the long-term neuropsychological outcomes[J]. Neuropsychol Rev, 2023, 33(2): 307-346. DOI: 10.1007/s11065-022-09540-9.
|
| [17] |
Petersen JJ, Kamp CB, Faltermeier P, et al. Deep brain stimulation for Parkinson's disease: systematic review with meta-analysis and trial sequential analysis[J]. BMJ Med, 2024, 3(1): e000705. DOI: 10.1136/bmjmed-2023-000705.
|
| [18] |
Piña-Fuentes D, van Dijk JMC, van Zijl JC, et al. Acute effects of adaptive deep brain stimulation in Parkinson's disease[J]. Brain Stimul, 2020, 13(6): 1507-1516. DOI: 10.1016/j.brs.2020.07.016.
|
| [19] |
Bronte-Stewart HM, Beudel M, Ostrem JL, et al. Long-term personalized adaptive deep brain stimulation in Parkinson disease: a nonrandomized clinical trial[J]. JAMA Neurol, 2025, 82(11): 1171-1180. DOI: 10.1001/jamaneurol.2025.2781.
|
| [20] |
Stanslaski S, Summers RLS, Tonder L, et al. Sensing data and methodology from the ADAPTIVE DBS Algorithm for Personalized Therapy in Parkinson's Disease (ADAPT-PD) clinical trial[J]. NPJ Parkinsons Dis, 2024, 10(1): 174. DOI: 10.1038/s41531-024-00772-5.
|
| [21] |
Klein P, Kaminski RM, Koepp M, et al. New epilepsy therapies in development[J]. Nat Rev Drug Discov, 2024, 23(9): 682-708. DOI: 10.1038/s41573-024-00981-w.
|
| [22] |
Salama H, Salama A, Oscher L, et al. The role of neuromodulation in the management of drug-resistant epilepsy[J]. Neurol Sci, 2024, 45(9): 4243-4268. DOI: 10.1007/s10072-024-07513-9.
|
| [23] |
Gouveia FV, Warsi NM, Suresh H, et al. Neurostimulation treatments for epilepsy: deep brain stimulation, responsive neurostimulation and vagus nerve stimulation[J]. Neurotherapeutics, 2024, 21(3): e00308. DOI: 10.1016/j.neurot.2023.e00308.
|
| [24] |
Nair DR, Laxer KD, Weber PB, et al. Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy[J]. Neurology, 2020, 95(9): e1244-e1256. DOI: 10.1212/wnl.0000000000010154.
|
| [25] |
Malaga M, Modiano Y, Haneef Z. Neuropsychological and neurobehavioral outcomes of responsive neurostimulation in epilepsy: a systematic review and meta-analysis[J]. Epilepsia, 2025, 66(10): 3585-3601. DOI: 10.1111/epi.18505.
|
| [26] |
Rao VR. Personalizing responsive neurostimulation for epilepsy[J]. J Clin Neurophysiol, 2025, 42(6): 505-512. DOI: 10.1097/wnp.0000000000001179.
|
| [27] |
|
| [28] |
Koptielow J, Szyłak E, Szewczyk-Roszczenko O, et al. Genetic update and treatment for dystonia[J]. Int J Mol Sci, 2024, 25(7): 3571. DOI: 10.3390/ijms25073571.
|
| [29] |
Paoli D, Mills R, Brechany U, et al. DBS in tremor with dystonia: VIM, GPi or both? A review of the literature and considerations from a single-center experience[J]. J Neurol, 2023, 270(4): 2217-2229. DOI: 10.1007/s00415-023-11569-6.
|
| [30] |
Hock AN, Jensen SR, Svaerke KW, et al. A randomised double-blind controlled study of deep brain stimulation for dystonia in STN or GPi-a long term follow-up after up to 15 years[J]. Parkinsonism Relat Disord, 2022, 96: 74-79. DOI: 10.1016/j.parkreldis.2022.02.001.
|
| [31] |
Chen W, Fan H, Lu G. The efficacy and predictors of using GPi-DBS to treat early-onset dystonia: an individual patient analysis[J]. Neural Plast, 2021, 2021: 9924639. DOI: 10.1155/2021/9924639.
|
| [32] |
Piña-Fuentes D, Beudel M, Little S, et al. Toward adaptive deep brain stimulation for dystonia[J]. Neurosurg Focus, 2018, 45(2): E3. DOI: 10.3171/2018.5.Focus18155.
|
| [33] |
|
| [34] |
Haubenberger D, Hallett M. Essential tremor[J]. N Engl J Med, 2018, 378(19): 1802-1810. DOI: 10.1056/NEJMcp1707928.
|
| [35] |
Aderinto N, Abraham I C, Olatunji G, et al. The efficacy of deep brain stimulation in the treatment of essential tremor: a systematic review[J]. Curr Treat Options Neurol, 2025, 27(1): 1-17. DOI: 10.1007/s11940-025-00831-z.
|
| [36] |
Wong JK, Hess CW, Almeida L, et al. Deep brain stimulation in essential tremor: targets, technology, and a comprehensive review of clinical outcomes[J]. Expert Rev Neurother, 2020, 20(4): 319-331. DOI: 10.1080/14737175.2020.1737017.
|
| [37] |
Tsuboi T, Jabarkheel Z, Zeilman PR, et al. Longitudinal follow-up with vim thalamic deep brain stimulation for dystonic or essential tremor[J]. Neurology, 2020, 94(10): e1073-e1084. DOI: 10.1212/wnl.0000000000008875.
|
| [38] |
Ferleger BI, Houston B, Thompson MC, et al. Fully implanted adaptive deep brain stimulation in freely moving essential tremor patients[J]. J Neural Eng, 2020, 17(5): 056026. DOI: 10.1088/1741-2552/abb416.
|
| [39] |
Acevedo N, Rossell S, Castle D, et al. Clinical outcomes of deep brain stimulation for obsessive-compulsive disorder: insight as a predictor of symptom changes[J]. Psychiatry Clin Neurosci, 2024, 78(2): 131-141. DOI: 10.1111/pcn.13619.
|
| [40] |
Vansteensel MJ, Pels EGM, Bleichner MG, et al. Fully implanted brain-computer interface in a locked-in patient with ALS[J]. N Engl J Med, 2016, 375(21): 2060-2066. DOI: 10.1056/NEJMoa1608085.
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
Aydin S, Darko K, Detchou D, et al. Ethics of deep brain stimulation for neuropsychiatric disorders[J]. Neurosurg Rev, 2024, 47(1): 479. DOI: 10.1007/s10143-024-02746-w.
|
| [45] |
Abdulrahman Satam I, Szabolcsi R. Ethical and safety challenges of implantable brain-computer interface[J]. INDECS, 2025, 23(2): 82-94. DOI: 10.7906/indecs.23.2.1.
|
| [46] |
|