[1] |
Thibaut A, Schiff N, Giacino J, et al. Therapeutic interventions in patients with prolonged disorders of consciousness[J]. Lancet Neurol, 2019, 18(6): 600-614. DOI: 10.1016/S1474-4422(19)30031-6.
|
[2] |
|
[3] |
Lemaire JJ, Sontheimer A, Pereira B, et al. Deep brain stimulation in five patients with severe disorders of consciousness[J]. Ann Clin Transl Neurol, 2018, 5(11): 1372-1384. DOI: 10.1002/acn3.648.
|
[4] |
Yang Y, He Q, Xia X, et al. Long-term functional prognosis and related factors of spinal cord stimulation in patients with disorders of consciousness[J]. CNS Neurosci Ther, 2022, 28(8): 1249-1258. DOI: 10.1111/cns.13870.
|
[5] |
Zhuang Y, Yang Y, Xu L, et al. Effects of short-term spinal cord stimulation on patients with prolonged disorder of consciousness: a pilot study[J]. Front Neurol, 2022, 13: 1026221. DOI: 10.3389/fneur.2022.1026221.
|
[6] |
Bruno MA, Vanhaudenhuyse A, Thibaut A, et al. From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: recent advances in our understanding of disorders of consciousness[J]. J Neurol, 2011, 258(7): 1373-1384. DOI: 10.1007/s00415-011-6114-x.
|
[7] |
Giacino JT, Fins JJ, Laureys S, et al. Disorders of consciousness after acquired brain injury: the state of the science[J]. Nat Rev Neurol, 2014, 10(2): 99-114. DOI: 10.1038/nrneurol.2013.279.
|
[8] |
|
[9] |
Ballanti S, Campagnini S, Liuzzi P, et al. EEG-based methods for recovery prognosis of patients with disorders of consciousness: a systematic review[J]. Clin Neurophysiol, 2022, 144: 98-114. DOI: 10.1016/j.clinph.2022.09.017.
|
[10] |
Fellinger R, Klimesch W, Schnakers C, et al. Cognitive processes in disorders of consciousness as revealed by EEG time-frequency analyses[J]. Clin Neurophysiol, 2011, 122(11): 2177-2184. DOI: 10.1016/j.clinph.2011.03.004.
|
[11] |
Liang Z, Wang Y, Sun X, et al. EEG entropy measures in anesthesia[J]. Front Comput Neurosci, 2015, 9: 16. DOI: 10.3389/fncom.2015.00016.
|
[12] |
Borowska M. Multiscale permutation Lempel-Ziv complexity measure for biomedical signal analysis: interpretation and application to focal EEG signals[J]. Entropy (Basel), 2021, 23(7): 832. DOI: 10.3390/e23070832.
|
[13] |
Schraag S, Flaschar J, Schleyer M, et al. The contribution of remifentanil to middle latency auditory evoked potentials during induction of propofol anesthesia[J]. Anesth Analg, 2006, 103(4): 902-907. DOI: 10.1213/01.ane.0000237282.76394.6b.
|
[14] |
Struys MM, Vereecke H, Moerman A, et al. Ability of the bispectral index, autoregressive modelling with exogenous input-derived auditory evoked potentials, and predicted propofol concentrations to measure patient responsiveness during anesthesia with propofol and remifentanil[J]. Anesthesiology, 2003, 99(4): 802-812. DOI: 10.1097/00000542-200310000-00010.
|
[15] |
Menascu S, Mohamed I, Tshechmer SM, et al. The significance of frontal intermittent rhythmic delta activity in children[J]. Can J Neurol Sci, 2010, 37(5): 656-661. DOI: 10.1017/s0317167100010854.
|
[16] |
Shtoots L, Dagan T, Levine J, et al. The effects of theta EEG neurofeedback on the consolidation of spatial memory[J]. Clin EEG Neurosci, 2021, 52(5): 338-344. DOI: 10.1177/1550059420973107.
|
[17] |
Bays BC, Visscher KM, Le Dantec CC, et al. Alpha-band EEG activity in perceptual learning[J]. J Vis, 2015, 15(10): 7. DOI: 10.1167/15.10.7.
|
[18] |
Laufs H, Krakow K, Sterzer P, et al. Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest[J]. Proc Natl Acad Sci U S A, 2003, 100(19): 11053-11058. DOI: 10.1073/pnas.1831638100.
|
[19] |
Lechinger J, Bothe K, Pichler G, et al. CRS-R score in disorders of consciousness is strongly related to spectral EEG at rest[J]. J Neurol, 2013, 260(9): 2348-2356. DOI: 10.1007/s00415-013-6982-3.
|
[20] |
Rudolph U, Antkowiak B. Molecular and neuronal substrates for general anaesthetics[J]. Nat Rev Neurosci, 2004, 5(9): 709-720. DOI: 10.1038/nrn1496.
|
[21] |
Franks NP. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal[J]. Nat Rev Neurosci, 2008, 9(5): 370-386. DOI: 10.1038/nrn2372.
|
[22] |
Brown EN, Purdon PL, Van Dort CJ. General anesthesia and altered states of arousal: a systems neuroscience analysis[J]. Annu Rev Neurosci, 2011, 34: 601-628. DOI: 10.1146/annurev-neuro-060909-153200.
|
[23] |
Campagna JA, Miller KW, Forman SA. Mechanisms of actions of inhaled anesthetics[J]. N Engl J Med, 2003, 348(21): 2110-2124. DOI: 10.1056/NEJMra021261.
|
[24] |
Ružman T, Šimurina T, Gulam D, et al. Sevoflurane preserves regional cerebral oxygen saturation better than propofol: Randomized controlled trial[J]. J Clin Anesth, 2017, 36: 110-117. DOI: 10.1016/j.jclinane.2016.10.010.
|
[25] |
Lim BG, Shen FY, Kim YB, et al. Possible role of GABAergic depolarization in neocortical neurons in generating hyperexcitatory behaviors during emergence from sevoflurane anesthesia in the rat[J]. ASN Neuro, 2014, 6(2): e00141. DOI: 10.1042/AN20140004.
|
[26] |
Brechmann T, Maier C, Kaisler M, et al. Propofol sedation during gastrointestinal endoscopy arouses euphoria in a large subset of patients[J]. United European Gastroenterol J, 2018, 6(4): 536-546. DOI: 10.1177/2050640617736231.
|
[27] |
Tucker C, Sandhu K. The effectiveness of zolpidem for the treatment of disorders of consciousness[J]. Neurocrit Care, 2016, 24(3): 488-493. DOI: 10.1007/s12028-015-0227-5.
|
[28] |
Noormandi A, Shahrokhi M, Khalili H. Potential benefits of zolpidem in disorders of consciousness[J]. Expert Rev Clin Pharmacol, 2017, 10(9): 983-992. DOI: 10.1080/17512433.2017.1347502.
|
[29] |
Zhang B, O'Brien K, Won W, et al. A retrospective analysis on clinical practice-based approaches using zolpidem and lorazepam in disorders of consciousness[J]. Brain Sci, 2021, 11(6). DOI: 10.3390/brainsci11060726.
|
[30] |
Hao Z, Xia X, Bai Y, et al. EEG evidence reveals zolpidem-related alterations and prognostic value in disorders of consciousness[J]. Front Neurosci, 2022, 16: 863016. DOI: 10.3389/fnins.2022.863016.
|
[31] |
Kamenik M, Möller Petrun A. Bispectral index-guided induction of general anaesthesia[J]. Br J Anaesth, 2014, 112(1): 169. DOI: 10.1093/bja/aet445.
|
[32] |
Kreuzer M, Kochs EF, Schneider G, et al. Non-stationarity of EEG during wakefulness and anaesthesia: advantages of EEG permutation entropy monitoring[J]. J Clin Monit Comput, 2014, 28(6): 573-580. DOI: 10.1007/s10877-014-9553-y.
|
[33] |
Bai Y, Liang Z, Li X, et al. Permutation Lempel-Ziv complexity measure of electroencephalogram in GABAergic anaesthetics[J]. Physiol Meas, 2015, 36(12): 2483-2501. DOI: 10.1088/0967-3334/36/12/2483.
|
[34] |
Li D, Fabus MS, Sleigh JW. Brain Complexities and Anesthesia: Their Meaning and Measurement[J]. Anesthesiology, 2022, 137(3): 290-302. DOI: 10.1097/ALN.0000000000004293.
|
[35] |
Pritchett S, Zilberg E, Xu ZM, et al. Peak and averaged bicoherence for different EEG patterns during general anaesthesia[J]. Biomed Eng Online, 2010, 9: 76. DOI: 10.1186/1475-925X-9-76.
|
[36] |
Miyake W, Oda Y, Ikeda Y, et al. Electroencephalographic response following midazolam-induced general anesthesia: relationship to plasma and effect-site midazolam concentrations[J]. J Anesth, 2010, 24(3): 386-393. DOI: 10.1007/s00540-010-0907-4.
|