[1] |
Hiebert JB, Shen Q, Thimmesch AR, et al. Traumatic brain injury and mitochondrial dysfunction[J]. Am J Med Sci, 2015, 350(2): 132-138.
|
[2] |
Gaddam SS, Buell T, Robertson CS. Systemic manifestations of traumatic brain injury[J]. Handb Clin Neurol, 2015, 127: 205-218.
|
[3] |
Dixon KJ. Pathophysiology of traumatic brain injury[J]. Phys Med Rehabil Clin N Am, 2017, 28(2): 215-225.
|
[4] |
中华人民共和国国家统计局. 中国统计年鉴2018[M]. 北京: 中国统计出版社, 2018.
|
[5] |
Maas AIR, Menon DK, Adelson PD, et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research[J]. Lancet Neurol, 2017, 16(12): 987-1048.
|
[6] |
Gao G, Wu X, Feng J, et al. Clinical characteristics and outcomes in patients with traumatic brain injury in China: a prospective, multicentre, longitudinal, observational study[J]. Lancet Neurol, 2020, 19(8): 670-677.
|
[7] |
Jiang JY, Gao GY, Feng JF, et al. Traumatic brain injury in China[J]. Lancet Neurol, 2019, 18(3): 286-295.
|
[8] |
Kaur P, Sharma S. Recent advances in pathophysiology of traumatic brain injury[J]. Curr Neuropharmacol, 2018, 16(8): 1224-1238.
|
[9] |
Jha RM, Kochanek PM, Simard JM. Pathophysiology and treatment of cerebral edema in traumatic brain injury[J]. Neuropharmacology, 2019, 145(Pt B): 230-246.
|
[10] |
陈邱明,袁邦清,吴贤群, 等. 开放性颅脑损伤早期临床救治策略[J]. 中华神经创伤外科电子杂志, 2021, 7(4): 207-210.
|
[11] |
Huang X, Zhang W, Shao Z. Association between long non-coding RNA polymorphisms and cancer risk: a meta-analysis[J]. Biosci Rep, 2018, 38(4): BSR20180365.
|
[12] |
An integrated encyclopedia of DNA elements in the human genome[J]. Nature, 2012, 489(7414): 57-74.
|
[13] |
Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development[J]. Nat Rev Genet, 2014, 15(1): 7-21.
|
[14] |
Wang Z, Li X. The role of noncoding RNA in hepatocellular carcinoma[J]. Gland Surg, 2013, 2(1): 25-29.
|
[15] |
Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs[J]. RNA Biol, 2013, 10(6): 925-933.
|
[16] |
Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs[J]. Cell, 2009, 136(4): 629-641.
|
[17] |
Beermann J, Piccoli MT, Viereck J, et al. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches[J]. Physiol Rev, 2016, 96(4): 1297-1325.
|
[18] |
Matsui M, Corey DR. Non-coding RNAs as drug targets[J]. Nat Rev Drug Discov, 2017, 16(3): 167-179.
|
[19] |
Khorkova O, Hsiao J, Wahlestedt C. Basic biology and therapeutic implications of lncRNA[J]. Adv Drug Deliv Rev, 2015, 87: 15-24.
|
[20] |
Zhang L, Wang H. Long non-coding RNA in CNS injuries: a new target for therapeutic intervention[J]. Mol Ther Nucleic Acids, 2019, 17: 754-766.
|
[21] |
Wu GC, Pan HF, Leng RX, et al. Emerging role of long noncoding RNAs in autoimmune diseases[J]. Autoimmun Rev, 2015, 14(9): 798-805.
|
[22] |
D'Agostino PM, Gottfried-Blackmore A, Anandasabapathy N, et al. Brain dendritic cells: biology and pathology[J]. Acta Neuropathol, 2012, 124(5): 599-614.
|
[23] |
Wang P, Xue Y, Han Y, et al. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation[J]. Science, 2014, 344(6181): 310-313.
|
[24] |
Ranzani V, Rossetti G, Panzeri I, et al. The long intergenic noncoding RNA landscape of human lymphocytes highlights the regulation of T cell differentiation by linc-MAF-4[J]. Nat Immunol, 2015, 16(3): 318-325.
|
[25] |
Statello L, Guo CJ, Chen LL, et al. Gene regulation by long non-coding RNAs and its biological functions[J]. Nat Rev Mol Cell Biol, 2021, 22(2): 96-118.
|
[26] |
Zhang R, Xia Y, Wang Z, et al. Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer[J]. Biochem Biophys Res Commun, 2017, 490(2): 406-414.
|
[27] |
Ji P, Diederichs S, Wang W, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer[J]. Oncogene, 2003, 22(39): 8031-8041.
|
[28] |
Patel NA, Moss LD, Lee JY, et al. Long noncoding RNA MALAT1 in exosomes drives regenerative function and modulates inflammation-linked networks following traumatic brain injury[J]. J Neuroinflammation, 2018, 15(1): 204.
|
[29] |
Stewart IB, McKenzie DC. The human spleen during physiological stress[J]. Sports Med, 2002, 32(6): 361-369.
|
[30] |
Klec C, Prinz F, Pichler M. Involvement of the long noncoding RNA NEAT1 in carcinogenesis[J]. Mol Oncol, 2019, 13(1): 46-60.
|
[31] |
Zhong J, Jiang L, Huang Z, et al. The long non-coding RNA Neat1 is an important mediator of the therapeutic effect of bexarotene on traumatic brain injury in mice[J]. Brain Behav Immun, 2017, 65: 183-194.
|
[32] |
Xia LX, Ke C, Lu JM. NEAT1 contributes to neuropathic pain development through targeting miR-381/HMGB1 axis in CCI rat models[J]. J Cell Physiol, 2018, 233(9): 7103-7111.
|
[33] |
Hirose T, Virnicchi G, Tanigawa A, et al. NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies[J]. Mol Biol Cell, 2014, 25(1): 169-183.
|
[34] |
Yi H, Peng R, Zhang LY, et al. LincRNA-Gm4419 knockdown ameliorates NF-κB/NLRP3 inflammasome-mediated inflammation in diabetic nephropathy[J]. Cell Death Dis, 2017, 8(2): e2583.
|
[35] |
Xue Z, Zhang Z, Liu H, et al. lincRNA-Cox2 regulates NLRP3 inflammasome and autophagy mediated neuroinflammation[J]. Cell Death Differ, 2019, 26(1): 130-145.
|
[36] |
Ying D, Zhou X, Ruan Y, et al. LncRNA Gm4419 induces cell apoptosis in hepatic ischemia-reperfusion injury via regulating the miR-455-SOX6 axis[J]. Biochem Cell Biol, 2020, 98(4): 474-483.
|
[37] |
Schneider C, King RM, Philipson L. Genes specifically expressed at growth arrest of mammalian cells[J]. Cell, 1988, 54(6): 787-793.
|
[38] |
Zhang X, Liu F, Wang Q, et al. Overexpressed microRNA-506 and microRNA-124 alleviate H2O2-induced human cardiomyocyte dysfunction by targeting krüppel-like factor 4/5[J]. Mol Med Rep, 2017, 16(4): 5363-5369.
|
[39] |
Xu S, Zhu W, Shao M, et al. Ecto-5'-nucleotidase (CD73) attenuates inflammation after spinal cord injury by promoting macrophages/microglia M2 polarization in mice[J]. J Neuroinflammation, 2018, 15(1): 155.
|
[40] |
Mondal T, Subhash S, Vaid R, et al. MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA-DNA triplex structures[J]. Nat Commun, 2015, 6: 7743.
|
[41] |
Jing Y, Yang DX, Wang W, et al. Aloin protects against blood-brain barrier damage after traumatic brain injury in mice[J]. Neurosci Bull, 2020, 36(6): 625-638.
|
[42] |
Bedi SS, Aertker BM, Liao GP, et al. Therapeutic time window of multipotent adult progenitor therapy after traumatic brain injury[J]. J Neuroinflammation, 2018, 15(1): 84.
|
[43] |
Shi J, Dong B, Cao J, et al. Long non-coding RNA in glioma: signaling pathways[J]. Oncotarget, 2017, 8(16): 27582-27592.
|
[44] |
Zhang P, Shi L, Song L, et al. LncRNA CRNDE and lncRNA SNHG7 are promising biomarkers for prognosis in synchronous colorectal liver metastasis following hepatectomy[J]. Cancer Manag Res, 2020, 12: 1681-1692.
|
[45] |
Gao H, Song X, Kang T, et al. Long noncoding RNA CRNDE functions as a competing endogenous RNA to promote metastasis and oxaliplatin resistance by sponging miR-136 in colorectal cancer[J]. Onco Targets Ther, 2017, 10: 205-216.
|
[46] |
Stover JF, Schöning B, Beyer TF, et al. Temporal profile of cerebrospinal fluid glutamate, interleukin-6, and tumor necrosis factor-alpha in relation to brain edema and contusion following controlled cortical impact injury in rats[J]. Neurosci Lett, 2000, 288(1): 25-28.
|
[47] |
Rothwell N. Interleukin-1 and neuronal injury: mechanisms, modification, and therapeutic potential[J]. Brain Behav Immun, 2003, 17(3): 152-157.
|
[48] |
Kernie SG, Erwin TM, Parada LF. Brain remodeling due to neuronal and astrocytic proliferation after controlled cortical injury in mice[J]. J Neurosci Res, 2001, 66(3): 317-326.
|
[49] |
Rinn JL, Kertesz M, Wang JK, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs[J]. Cell, 2007, 129(7): 1311-1323.
|
[50] |
Cheng S, Zhang Y, Chen S, et al. LncRNA HOTAIR participates in microglia activation and inflammatory factor release by regulating the ubiquitination of MYD88 in traumatic brain injury[J]. J Mol Neurosci, 2021, 71(1): 169-177.
|
[51] |
Zhang HS, Li H, Zhang DD, et al. Inhibition of myeloid differentiation factor 88(MyD88) by ST2825 provides neuroprotection after experimental traumatic brain injury in mice[J]. Brain Res, 2016, 1643: 130-139.
|
[52] |
Dong D, Mu Z, Zhao C, et al. ZFAS1: a novel tumor-related long non-coding RNA[J]. Cancer Cell Int, 2018, 18: 125.
|
[53] |
Chen Y, Wei Z, Liu J, et al. Long noncoding RNA ZFAS1 aggravates spinal cord injury by binding with miR-1953 and regulating the PTEN/PI3K/AKT pathway[J]. Neurochem Int, 2021, 147: 104977.
|
[54] |
彭建华,庞金伟,吴越, 等. 长链非编码RNA F19对小鼠创伤性脑损伤后继发性脑损伤的影响[J]. 中华创伤杂志, 2019, 35(3): 267-273.
|
[55] |
Balu R. Inflammation and immune system activation after traumatic brain injury[J]. Curr Neurol Neurosci Rep, 2014, 14(10): 484.
|
[56] |
Viet QHN, Nguyen VQ, Le Hoang DM, et al. Ability to regulate immunity of mesenchymal stem cells in the treatment of traumatic brain injury[J]. Neurol Sci, 2022, 43(3): 2157-2164.
|
[57] |
丁华,张磊,袁即山, 等. 外泌体的神经免疫调节功能在脊髓损伤修复中作用的研究进展[J]. 中华神经创伤外科电子杂志, 2021, 7(5): 305-309.
|
[58] |
Nizamutdinov D, Shapiro LA. Overview of traumatic brain injury: an immunological context[J]. Brain Sci, 2017, 7(1): 11.
|
[59] |
Tobin RP, Mukherjee S, Kain JM, et al. Traumatic brain injury causes selective, CD74-dependent peripheral lymphocyte activation that exacerbates neurodegeneration[J]. Acta Neuropathol Commun, 2014, 2: 143.
|