[1] |
Mustafa AG, Singh IN, Wang J, et al. Mitochondrial protection after traumatic brain injury by scavenging lipid peroxyl radicals[J]. J Neurochem, 2010, 114(1): 271-280. DOI: 10.1111/j.1471-4159.2010.06749.x.
|
[2] |
Wang H, Zhou XM, Wu LY, et al. Aucubin alleviates oxidative stress and inflammation via Nrf2-mediated signaling activity in experimental traumatic brain injury[J]. J Neuroinflammation, 2020, 17(1): 188. DOI: 10.1186/s12974-020-01863-9.
|
[3] |
Martinez-Tapia RJ, Estrada-Rojo F, Lopez-Aceves TG, et al. Diurnal variation induces neurobehavioral and neuropathological differences in a rat model of traumatic brain injury[J]. Front Neurosci, 2020, 14: 564992. DOI: 10.3389/fnins.2020.564992.
|
[4] |
Gong QY, Cai L, Jing Y, et al. Urolithin A alleviates blood-brain barrier disruption and attenuates neuronal apoptosis following traumatic brain injury in mice[J]. Neural Regen Res, 2022, 17(9): 2007-2013. DOI: 10.4103/1673-5374.335163.
|
[5] |
Betancur MI, Mason HD, Alvarado-Velez M, et al. Chondroitin sulfate glycosaminoglycan matrices promote neural stem cell maintenance and neuroprotection post-traumatic brain injury[J]. ACS Biomater Sci Eng, 2017, 3(3): 420-430. DOI: 10.1021/acsbiomaterials.6b00805.
|
[6] |
Jiang M, Liu X, Zhang D, et al. Celastrol treatment protects against acute ischemic stroke-induced brain injury by promoting an IL-33/ST2 axis-mediated microglia/macrophage M2 polarization [J]. J Neuroinflammation, 2018, 15(1): 78. DOI: 10.1186/s12974-018-1124-6.
|
[7] |
Pan X, Zhao Y, Cheng T, et al. Monitoring NAD(P)H by an ultrasensitive fluorescent probe to reveal reductive stress induced by natural antioxidants in HepG2 cells under hypoxia[J]. Chem Sci, 2019, 10(35): 8179-8186. DOI: 10.1039/c9sc02020a.
|
[8] |
Zhang R, Zhang N, Zhang H, et al. Celastrol prevents cadmium-induced neuronal cell death by blocking reactive oxygen species-mediated mammalian target of rapamycin pathway[J]. Br J Pharmacol, 2017, 174(1): 82-100. DOI: 10.1111/bph.13655.
|
[9] |
Zhang Y, Geng C, Liu X, et al. Celastrol ameliorates liver metabolic damage caused by a high-fat diet through Sirt1[J]. Mol Metab, 2017, 6(1): 138-147. DOI: 10.1016/j.molmet.2016.11.002.
|
[10] |
Lin MW, Lin CC, Chen YH, et al. Celastrol inhibits dopaminergic neuronal death of parkinson's disease through activating mitophagy[J]. Antioxidants (Basel), 2019, 9(1): 37. DOI: 10.3390/antiox9010037.
|
[11] |
Chow AM, Tang DW, Hanif A, et al. Localization of heat shock proteins in cerebral cortical cultures following induction by celastrol[J]. Cell Stress Chaperones, 2014, 19(6): 845-851. DOI: 10.1007/s12192-014-0508-5.
|
[12] |
Xu H, Cai Y, Yu M, et al. Celastrol protects against early brain injury after subarachnoid hemorrhage in rats through alleviating blood-brain barrier disruption and blocking necroptosis[J]. Aging (Albany NY), 2021, 13(12): 16816-16833. DOI: 10.18632/aging.203221.
|
[13] |
Chen M, Liu M, Luo Y, et al. Celastrol protects against cerebral ischemia/reperfusion injury in mice by inhibiting glycolysis through targeting hif-1α/pdk1 axis[J]. Oxid Med Cell Longev, 2022, 2022: 7420507. DOI: 10.1155/2022/7420507.
|
[14] |
Cui W, Wu X, Shi Y, et al. 20-HETE synthesis inhibition attenuates traumatic brain injury-induced mitochondrial dysfunction and neuronal apoptosis via the SIRT1/PGC-1α pathway: a translational study[J]. Cell Prolif, 2021, 54(2): e12964. DOI: 10.1111/cpr.12964.
|
[15] |
Saeed K, Jo MH, Park JS, et al. 17β-estradiol abrogates oxidative stress and neuroinflammation after cortical stab wound injury[J]. Antioxidants (Basel), 2021, 10(11): 1682. DOI: 10.3390/antiox10111682.
|
[16] |
Yu P, Li S, Zhang Z, et al. Progesterone-mediated angiogenic activity of endothelial progenitor cell and angiogenesis in traumatic brain injury rats were antagonized by progesterone receptor antagonist[J]. Cell Prolif, 2017, 50(5): e12362. DOI: 10.1111/cpr.12362.
|
[17] |
Li X, Guo H, Zhao L, et al. Adiponectin attenuates NADPH oxidase-mediated oxidative stress and neuronal damage induced by cerebral ischemia-reperfusion injury[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(12): 3265-3276. DOI: 10.1016/j.bbadis.2017.08.010.
|
[18] |
Seo JH, Kang SW, Kim K, et al. Environmental enrichment attenuates oxidative stress and alters detoxifying enzymes in an A53T α-synuclein transgenic mouse model of Parkinson's disease[J]. Antioxidants (Basel), 2020, 9(10): 928. DOI: 10.3390/antiox9100928.
|
[19] |
Canugovi C, Stevenson MD, Vendrov AE, et al. Increased mitochondrial NADPH oxidase 4 (NOX4) expression in aging is a causative factor in aortic stiffening[J]. Redox Biol, 2019, 26: 101288. DOI: 10.1016/j.redox.2019.101288.
|
[20] |
Lai Y, Lin P, Chen M, et al. Restoration of L-OPA1 alleviates acute ischemic stroke injury in rats via inhibiting neuronal apoptosis and preserving mitochondrial function[J]. Redox Biol, 2020, 34: 101503. DOI: 10.1016/j.redox.2020.101503.
|
[21] |
Wang Y, Zhang C, Peng W, et al. Hydroxysafflor yellow A exerts antioxidant effects in a rat model of traumatic brain injury[J]. Mol Med Rep, 2016, 14(4): 3690-3696. DOI: 10.3892/mmr.2016.5720.
|
[22] |
Li X Sr, Liu W, Jiang G, et al. Celastrol ameliorates neuronal mitochondrial dysfunction induced by intracerebral hemorrhage via targeting cAMP-activated exchange protein-1[J]. Adv Sci (Weinh), 2024, 11(19): e2307556. DOI: 10.1002/advs.202307556.
|
[23] |
Mojtahedzadeh M, Ahmadi A, Mahmoodpoor A, et al. Hypertonic saline solution reduces the oxidative stress responses in traumatic brain injury patients[J]. J Res Med Sci, 2014, 19(9): 867-874.
|
[24] |
Szarka N, Toth L, Czigler A, et al. Single mild traumatic brain injury induces persistent disruption of the blood-brain barrier, neuroinflammation and cognitive decline in hypertensive rats[J]. Int J Mol Sci, 2019, 20(13): 3223. DOI: 10.3390/ijms20133223.
|
[25] |
Li A, Gao M, Liu B, et al. Mitochondrial autophagy: molecular mechanisms and implications for cardiovascular disease[J]. Cell Death Dis, 2022, 13(5): 444. DOI: 10.1038/s41419-022-04906-6.
|
[26] |
Mocan L, Ilie I, Tabaran FA, et al. Surface plasmon resonance-induced photoactivation of gold nanoparticles as mitochondria-targeted therapeutic agents for pancreatic cancer[J]. Expert Opin Ther Targets, 2013, 17(12): 1383-1393. DOI: 10.1517/14728222.2013.855200.
|
[27] |
Zhao Y, Yan T, Xiong C, et al. Overexpression of lipoic acid synthase gene alleviates diabetic nephropathy of Leprdb/db mice[J]. BMJ Open Diabetes Res Care, 2021, 9(1): e002260. DOI: 10.1136/bmjdrc-2021-002260.
|
[28] |
Chang P, Zhang X, Zhang J, et al. BNP protects against diabetic cardiomyopathy by promoting Opa1-mediated mitochondrial fusion via activating the PKG-STAT3 pathway[J]. Redox Biol, 2023, 62: 102702. DOI: 10.1016/j.redox.2023.102702.
|
[29] |
Lu W, Zhao M, Rajbhandary S, et al. Free iron catalyzes oxidative damage to hematopoietic cells/mesenchymal stem cells in vitro and suppresses hematopoiesis in iron overload patients[J]. Eur J Haematol, 2013, 91(3): 249-261. DOI: 10.1111/ejh.12159.
|
[30] |
Li J, Li M, Ge Y, et al. β-amyloid protein induces mitophagy-dependent ferroptosis through the CD36/PINK/PARKIN pathway leading to blood-brain barrier destruction in Alzheimer's disease[J]. Cell Biosci, 2022, 12(1): 69. DOI: 10.1186/s13578-022-00807-5.
|
[31] |
Bubb KJ, Drummond GR, Figtree GA. New opportunities for targeting redox dysregulation in cardiovascular disease[J]. Cardiovasc Res, 2020, 116(3): 532-544. DOI: 10.1093/cvr/cvz183.
|
[32] |
Liu L, Cao Q, Gao W, et al. Melatonin protects against focal cerebral ischemia-reperfusion injury in diabetic mice by ameliorating mitochondrial impairments: involvement of the Akt-SIRT3-SOD2 signaling pathway[J]. Aging (Albany NY), 2021, 13(12): 16105-16123. DOI: 10.18632/aging.203137.
|
[33] |
Alrob OA, Sankaralingam S, Ma C, et al. Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling[J]. Cardiovasc Res, 2014, 103(4): 485-497. DOI: 10.1093/cvr/cvu156.
|
[34] |
Wan X, Wang C, Huang Z, et al. Cisplatin inhibits SIRT3-deacetylation MTHFD2 to disturb cellular redox balance in colorectal cancer cell[J]. Cell Death Dis, 2020, 11(8): 649. DOI: 10.1038/s41419-020-02825-y.
|
[35] |
Ma J, Liu B, Yu D, et al. SIRT3 deacetylase activity confers chemoresistance in AML via regulation of mitochondrial oxidative phosphorylation[J]. Br J Haematol, 2019, 187(1): 49-64. DOI: 10.1111/bjh.16044.
|
[36] |
Tyagi A, Nguyen CU, Chong T, et al. SIRT3 deficiency-induced mitochondrial dysfunction and inflammasome formation in the brain[J]. Sci Rep, 2018, 8(1): 17547. DOI: 10.1038/s41598-018-35890-7.
|
[37] |
Bindu S, Pillai VB, Kanwal A, et al. Sirt3 blocks myofibroblast differentiation and pulmonary fibrosis by preventing mitochondrial DNA damage[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 312(1): L68-l78. DOI: 10.1152/ajplung.00188.2016.
|