[1] |
赵元立,王亮,赵雅慧,等. 3D打印技术在神经外科应用及发展前景[J]. 中国微侵袭神经外科杂志, 2020, 25(3): 97-100.
|
[2] |
徐弢. 生物3D打印在神经科学领域的最新进展[J]. 中华神经创伤外科电子杂志, 2018, 4(2): 65-67.
|
[3] |
张涛,刘晟,高阳,等. 3D打印手术导板在高血压性脑出血术中的应用[J]. 中国临床神经外科杂志, 2019, 24(2): 107-109.
|
[4] |
白云松,张学军,曹隽,等. 3D打印模型在儿童先天性脊柱侧凸治疗中的应用研究[J]. 临床小儿外科杂志, 2020, 19(2): 115-119.
|
[5] |
孙诚,于长路,贾科峰,等. 医学3D打印在肝脏系统及其疾病中的应用及展望[J]. 医疗装备, 2019, 32(7): 196-199.
|
[6] |
林云志,方国芳,桑宏勋,等. 3D打印金属人工椎体在脊柱骨巨细胞瘤中的应用1例[J]. 生物骨科材料与临床研究, 2020, 17(1): 31-32.
|
[7] |
夏天,孙宇,赵衍斌,等. 3D打印定制钛合金融合器在先天性颈椎侧凸畸形治疗中的应用[J]. 中国脊柱脊髓杂志, 2020, 30(9): 791-796.
|
[8] |
Mommaerts MY, Depauw PR, Nout E. Ceramic 3D-printed titanium cranioplasty[J]. Craniomaxillofac Trauma Reconstr, 2020, 13(4): 329-333.
|
[9] |
Noor N, Shapira A, Edri R, et al. 3D printing of personalized thick and perfusable cardiac patches and hearts[J]. Adv Sci (Weinh), 2019, 6(11): 1900344.
|
[10] |
Deng K, Ye X, Yang Y, et al. Evaluation of efficacy and biocompatibility of a new absorbable synthetic substitute as a dural onlay graft in a large animal model[J]. Neurol Res, 2016, 38(9): 799-808.
|
[11] |
Shin CS, Cabrera FJ, Lee R, et al. 3D-bioprinted inflammation modulating polymer scaffolds for soft tissue repair[J]. Adv Mater, 2021, 33(4): e2003778.
|
[12] |
Grigoryan B, Paulsen SJ, Corbett DC, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels[J]. Science, 2019, 364(6439): 458-464.
|
[13] |
Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of collagen to rebuild components of the human heart[J]. Science, 2019, 365(6452): 482-487.
|
[14] |
Zhao Y, Yao R, Ouyang L, et al. Three-dimensional printing of Hela cells for cervical tumor model in vitro[J]. Biofabrication, 2014, 6(3): 035001.
|
[15] |
Laronda MM, Rutz AL, Xiao S, et al. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice[J]. Nat Commun, 2017, 8: 15261.
|
[16] |
Zhao W, Xu T. Preliminary engineering for in situ in vivo bioprinting: a novel micro bioprinting platform for in situ in vivo bioprinting at a gastric wound site[J]. Biofabrication, 2020, 12(4): 045020.
|
[17] |
Lan Q, Chen A, Zhang T, et al. Development of three-dimensional printed craniocerebral models for simulated neurosurgery[J]. World Neurosurg, 2016, 91: 434-442.
|
[18] |
杜国然,李泽福,胡秀玉,等. 3D打印技术在高血压性脑出血硬通道穿刺术中的应用[J]. 中国微侵袭神经外科杂志, 2017, 22(3): 137-138.
|
[19] |
朱俊豪,文国道,丛子翔,等. 应用3D打印颅脑模型行内镜下经鼻蝶入路手术训练[J]. 中国微侵袭神经外科杂志, 2018, 23(11): 527-528.
|
[20] |
钱佳栋,冯小明,徐云峰,等. 3D打印颅脑实体模型在神经外科临床带教中的应用[J]. 浙江医学教育, 2019, 18(5): 10-12, 25.
|
[21] |
张毅,彭强,吴阳,等. 3D打印引导钛网在成年人颅骨缺损修补中的应用[J]. 中华神经创伤外科电子杂志, 2019, 5(3): 176-178.
|
[22] |
Chen H, Zhang J, Li X, et al. Multi-level customized 3D printing for autogenous implants in skull tissue engineering[J]. Biofabrication, 2019, 11(4): 045007.
|
[23] |
Omar O, Engstrand T, Kihlström Burenstam Linder L, et al. In situ bone regeneration of large cranial defects using synthetic ceramic implants with a tailored composition and design[J]. Proc Natl Acad Sci USA, 2020, 117(43): 26660-26671.
|
[24] |
Dai X, Ma C, Lan Q, et al. 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility[J]. Biofabrication, 2016, 8(4): 045005.
|
[25] |
Yi HG, Jeong YH, Kim Y, et al. A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy[J]. Nat Biomed Eng, 2019, 3(7): 509-519.
|
[26] |
Liu L, Li X, Zhang X, et al. Biomanufacturing of a novel in vitro biomimetic blood-brain barrier model[J]. Biofabrication, 2020, 12(3): 035008.
|
[27] |
林之琪,陈圣攀,洪韬,等. 3D打印硅胶脑血管模型的应用评价[J]. 中华神经创伤外科电子杂志, 2021, 7(1): 56-58.
|
[28] |
Jang L, Alvarado J, Pepona M, et al.Three-dimensional bioprinting of aneurysm-bearing tissue structure for endovascular deployment of embolization coils[J]. Biofabrication, 2020, 13(1): 015006.
|
[29] |
Gao Q, Liu Z, Lin Z, et al. 3D Bioprinting of vessel-like structures with multilevel fluidic channels[J]. ACS Biomater Sci Eng, 2017, 3(3): 399-408.
|
[30] |
Grigoryan B, Paulsen SJ, Corbett DC, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels[J]. Science, 2019, 364(6439): 458-464.
|