[1] |
Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets[J]. Lancet Neurol, 2012, 11(8): 720-731.
|
[2] |
Robinson SR, Dang TN, Dringen R, et al. Hemin toxicity: a preventable source of brain damage following hemorrhagic stroke[J]. Redox Rep, 2009, 14(6): 228-235.
|
[3] |
Regan RF, Chen J, Benvenisti-Zarom L. Heme oxygenase-2 gene deletion attenuates oxidative stress in neurons exposed to extracellular hemin[J]. BMC Neurosci, 2004, 5(1): 34.
|
[4] |
Laird MD, Wakade C, Alleyne CH Jr., et al. Hemin-induced necroptosis involves glutathione depletion in mouse astrocytes[J]. Free Radic Biol Med, 2008, 45(8): 1103-1114.
|
[5] |
Vandenabeele P, Galluzzi L, Vanden Berghe T, et al. Molecular mechanisms of necroptosis: an ordered cellular explosion[J]. Nat Rev Mol Cell Biol, 2010, 11(10): 700-714.
|
[6] |
Xu X, Chua CC, Kong J, et al. Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cells[J]. J Neurochem, 2007, 103(5): 2004-2014.
|
[7] |
Li Y, Yang X, Ma C, et al. Necroptosis contributes to the NMDA- induced excitotoxicity in rat’s cultured cortical neurons[J]. Neurosci Lett, 2008, 447(2-3): 120-123.
|
[8] |
Zhang DW, Shao J, Lin J, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis[J]. Science, 2009, 325(5938): 332-336.
|
[9] |
Galluzzi L, Vanden Berghe T, Vanlangenakker N, et al. Programmed necrosis from molecules to health and disease[J]. Int Rev Cell Mol Biol, 2011, 289: 1-35.
|
[10] |
He S, Wang L, Miao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha[J]. Cell, 2009, 137(6): 1100-1111.
|
[11] |
Vanlangenakker N, Vanden Berghe T, Vandenabeele P. Many stimuli pull the necrotic trigger, an overview[J]. Cell Death Differ, 2012, 19(1): 75-86.
|
[12] |
Aronowski J, Zhao X. Molecular pathophysiology of cerebral hemorrhage: secondary brain injury[J]. Stroke, 2011, 42(6): 1781-1786.
|
[13] |
Vandenabeele P, Declercq W, Van Herreweghe F, et al. The role of the kinases RIP1 and RIP3 in TNF-induced necrosis[J]. Sci Signal, 2010, 3(115): re4.
|
[14] |
Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury[J]. Nat Chem Biol, 2005, 1(2): 112-119.
|
[15] |
You Z, Savitz SI, Yang J, et al. Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice[J]. J Cereb Blood Flow Metab, 2008, 28(9): 1564-1573.
|
[16] |
Su X, Wang H, Kang D, et al. Necrostatin-1 ameliorates intracerebral hemorrhage-induced brain injury in mice through inhibiting RIP1/RIP3 pathway[J]. Neurochem Res, 2015, 40(4): 643-650.
|
[17] |
Degterev A, Hitomi J, Germscheid M, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins[J]. Nat Chem Biol, 2008, 4(5): 313-321.
|
[18] |
Zhu X, Tao L, Tejima-Mandeville E, et al. Plasmalemma permeability and necrotic cell death phenotypes after intracerebral hemorrhage in mice[J]. Stroke, 2012, 43(2): 524-531.
|
[19] |
Zille M, Karuppagounder SS, Chen Y, et al. Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis[J]. Stroke, 2017, 48(4): 1033-1043.
|
[20] |
Lule S, Wu L, McAllister LM, et al. Genetic inhibition of receptor interacting protein kinase-1 reduces cell death and improves functional outcome after intracerebral hemorrhage in mice[J]. Stroke, 2017, 48(9): 2549-2556.
|