切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2025, Vol. 11 ›› Issue (03) : 185 -191. doi: 10.3877/cma.j.issn.2095-9141.2025.03.008

综述

创伤后应激障碍的生物标志物研究进展
张泽瀚1, 费晓炜1, 吕伟豪1, 蔡敏1, 庄茁2, 王化宁1, 费舟1,()   
  1. 1710032 西安,解放军空军军医大学西京医院神经外科
    2100084 北京,清华大学航天航空学院
  • 收稿日期:2025-01-01 出版日期:2025-06-15
  • 通信作者: 费舟

Research progress on biomarkers of post-traumatic stress disorder

Zehan Zhang1, Xiaowei Fei1, Weihao Lyu1, Min Cai1, Zhuo Zhuang2, Huaning Wang1, Zhou Fei1,()   

  1. 1Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Chinese People's Liberation Army, Xi'an 710032, China
    2School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
  • Received:2025-01-01 Published:2025-06-15
  • Corresponding author: Zhou Fei
  • Supported by:
    National Key Research and Development Program(2020-JCJQ-ZD-254-04); Major Science and Technology Research Project on Military Medicine and Aviation Medicine of the Air Force Medical University in 2023(2023JSYX04)
引用本文:

张泽瀚, 费晓炜, 吕伟豪, 蔡敏, 庄茁, 王化宁, 费舟. 创伤后应激障碍的生物标志物研究进展[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(03): 185-191.

Zehan Zhang, Xiaowei Fei, Weihao Lyu, Min Cai, Zhuo Zhuang, Huaning Wang, Zhou Fei. Research progress on biomarkers of post-traumatic stress disorder[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2025, 11(03): 185-191.

创伤后应激障碍(PTSD)源于个体经历创伤性事件后所产生的精神健康障碍,常因爆炸或冲击等外部因素所触发,在军事战争中其患病率异常显著,对患者及社会造成极大危害。目前对PTSD的诊断仍缺乏客观标准,对其进行筛查和定性诊断存在困难。本文总结了最新生物标志物的研究进展,包括PTSD相关遗传易感性生物标志物、神经影像学发现的大脑结构及功能改变相关的生物标志物、外周自主神经系统功能变化及特异性外周体液生物标志物等,并探讨这些生物标志物在临床中的潜在应用,旨在为PTSD的早期识别、诊断和个性化治疗提供科学依据,推动生物标志物在临床实践中的应用。

Post-traumatic stress disorder (PTSD) is a mental health condition that arises following an individual's exposure to traumatic events, often triggered by external factors such as explosions or shock, particularly evident in military conflicts, where its prevalence is significantly high, causing severe repercussions for both patients and society. Currently, the diagnosis of PTSD lacks objective standards, making screening and qualitative assessment challenging. This paper summarizes the latest research progress on genetic susceptibility biomarkers related to PTSD, biomarkers associated with structural and functional changes in the brain as revealed by neuroimaging findings, alterations in peripheral autonomic nervous system function, and specific peripheral fluid biomarkers, while also exploring the potential clinical applications of these biomarkers. The aim of this review is to provide a scientific basis for the early recognition, diagnosis, and personalized treatment of PTSD, thereby promoting the application of biomarkers in clinical practice.

[1]
Su YJ. PTSD and depression in adult burn patients three months postburn: the contribution of psychosocial factors[J]. Gen Hosp Psychiatry, 2023, 82: 33-40. DOI: 10.1016/j.genhosppsych.2023.03.004.
[2]
Maercker A, Cloitre M, Bachem R, et al. Complex post-traumatic stress disorder[J]. Lancet, 2022, 400(10345): 60-72. DOI: 10.1016/S0140-6736(22)00821-2.
[3]
Nanavati HD, Arevalo A, Memon AA, et al. Associations between posttraumatic stress and stroke: a systematic review and meta-analysis[J]. J Trauma Stress, 2023, 36(2): 259-271. DOI: 10.1002/jts.22925.
[4]
van den Berk Clark C, Kansara V, Fedorova M, et al. How does PTSD treatment affect cardiovascular, diabetes and metabolic disease risk factors and outcomes? A systematic review[J]. J Psychosom Res, 2022, 157: 110793. DOI: 10.1016/j.jpsychores.2022.110793.
[5]
Davis LL, Schein J, Cloutier M, et al. The economic burden of posttraumatic stress disorder in the United States from a societal perspective[J]. J Clin Psychiatry, 2022, 83(3): 21m14134. DOI: 10.4088/JCP.21m14134.
[6]
Hansen M, Armour C, McGlinchey E, et al. Investigating the DSM-5 and the ICD-11 PTSD symptoms using network analysis across two distinct samples[J]. Psychol Trauma, 2023, 15(5): 757-766. DOI: 10.1037/tra0001281.
[7]
Merians AN, Spiller T, Harpaz-Rotem I, et al. Post-traumatic stress disorder[J]. Med Clin North Am, 2023, 107(1): 85-99. DOI: 10.1016/j.mcna.2022.04.003.
[8]
Lonnen E, Paskell R. Gender, sex and complex PTSD clinical presentation: a systematic review[J]. Eur J Psychotraumatol, 2024, 15(1): 2320994. DOI: 10.1080/20008066.2024.2320994.
[9]
Petereit-Haack G, Bolm-Audorff U, Romero Starke K, et al. Occupational risk for post-traumatic stress disorder and trauma-related depression: a systematic review with meta-analysis[J]. Int J Environ Res Public Health, 2020, 17(24): 9369. DOI: 10.3390/ijerph17249369.
[10]
Burback L, Brémault-Phillips S, Nijdam MJ, et al. Treatment of posttraumatic stress disorder: a state-of-the-art review[J]. Curr Neuropharmacol, 2024, 22(4): 557-635. DOI: 10.2174/1570159X21666230428091433.
[11]
Diamond PR, Airdrie JN, Hiller R, et al. Change in prevalence of post-traumatic stress disorder in the two years following trauma: a meta-analytic study[J]. Eur J Psychotraumatol, 2022, 13(1): 2066456. DOI: 10.1080/20008198.2022.2066456.
[12]
Koenen KC, Ratanatharathorn A, Ng L, et al. Posttraumatic stress disorder in the World Mental Health Surveys[J]. Psychol Med, 2017, 47(13): 2260-2274. DOI: DOI:10.1017/S0033291717000708.
[13]
Johnson RJ, Antonaccio O, Botchkovar E, et al. War trauma and PTSD in Ukraine's civilian population: comparing urban-dwelling to internally displaced persons[J]. Soc Psychiatry Psychiatr Epidemiol, 2022, 57(9): 1807-1816. DOI: 10.1007/s00127-021-02176-9.
[14]
Ben-Ezra M, Goodwin R, Leshem E, et al. PTSD symptoms among civilians being displaced inside and outside the Ukraine during the 2022 Russian invasion[J]. Psychiatry Res, 2023, 320: 115011. DOI: 10.1016/j.psychres.2022.115011.
[15]
Karatzias T, Shevlin M, Ben-Ezra M, et al. War exposure, posttraumatic stress disorder, and complex posttraumatic stress disorder among parents living in Ukraine during the Russian war[J]. Acta Psychiatr Scand, 2023, 147(3): 276-285. DOI: 10.1111/acps.13529.
[16]
Skórzewska A, Lehner M, Wisłowska-Stanek A, et al. Individual susceptibility or resistance to posttraumatic stress disorder-like behaviours[J]. Behav Brain Res, 2020, 386: 112591. DOI: 10.1016/j.bbr.2020.112591.
[17]
James LM, Georgopoulos AP. Immunogenetics of posttraumatic stress disorder (PTSD) in women veterans[J]. Brain Behav Immun Health, 2022, 26: 100567. DOI: 10.1016/j.bbih.2022.100567.
[18]
Vaccarino V, Shah AJ, Moncayo V, et al. Posttraumatic stress disorder, myocardial perfusion, and myocardial blood flow: a longitudinal twin study[J]. Biol Psychiatry, 2022, 91(7): 615-625. DOI: 10.1016/j.biopsych.2021.09.016.
[19]
Cusack SE, Maihofer AX, Bustamante D, et al. Genetic influences on testosterone and PTSD[J]. J Psychiatr Res, 2024, 174: 8-11. DOI: 10.1016/j.jpsychires.2024.04.002.
[20]
Tseilikman VE, Tseilikman OB, Pashkov AA, et al. Mechanisms of susceptibility and resilience to PTSD: role of dopamine metabolism and BDNF expression in the hippocampus[J]. Int J Mol Sci, 2022, 23(23): 14575. DOI: 10.3390/ijms232314575.
[21]
Le Tran N, Wang Y, Nie G. Podocalyxin in normal tissue and epithelial cancer[J]. Cancers (Basel), 2021, 13(12): 2863. DOI: 10.3390/cancers13122863.
[22]
Mehlig K, Foraita R, Nagrani R, et al. Genetic associations vary across the spectrum of fasting serum insulin: results from the European IDEFICS/I. Family children's cohort[J]. Diabetologia, 2023, 66(10): 1914-1924. DOI: 10.1007/s00125-023-05957-w.
[23]
Sanders SS, Hernandez LM, Soh H, et al. The palmitoyl acyltransferase ZDHHC14 controls Kv1-family potassium channel clustering at the axon initial segment[J]. Elife, 2020, 9: e56058. DOI: 10.7554/eLife.56058.
[24]
Nievergelt CM, Maihofer AX, Klengel T, et al. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci[J]. Nat Commun, 2019, 10(1): 4558. DOI: 10.1038/s41467-019-12576-w.
[25]
Parthasarathy R, Santiago F, McCluskey P, et al. The microbiome in HLA-B27-associated disease: implications for acute anterior uveitis and recommendations for future studies[J]. Trends Microbiol, 2023, 31(2): 142-158. DOI: 10.1016/j.tim.2022.08.008.
[26]
Zhang X, Han Y, Liu X, et al. Assessment of genetic variants in D2 dopamine receptor (DRD2) gene as risk factors for post-traumatic stress disorder (PTSD) and major depressive disorder (MDD): a systematic review and meta-analysis[J]. J Affect Disord, 2023, 328: 312-323. DOI: 10.1016/j.jad.2023.02.001.
[27]
Polimanti R, Wendt FR. Posttraumatic stress disorder: from gene discovery to disease biology[J]. Psychol Med, 2021, 51(13): 2178-2188. DOI: 10.1017/S0033291721000210.
[28]
Stein MB, Levey DF, Cheng Z, et al. Genome-wide association analyses of post-traumatic stress disorder and its symptom subdomains in the Million Veteran Program[J]. Nat Genet, 2021, 53(2): 174-184. DOI: 10.1038/s41588-020-00767-x.
[29]
Del Casale A, Ferracuti S, Barbetti AS, et al. Grey matter volume reductions of the left hippocampus and amygdala in PTSD: a coordinate-based meta-analysis of magnetic resonance imaging studies[J]. Neuropsychobiology, 2022, 81(4): 257-264. DOI: 10.1159/000522003.
[30]
Chen LW, Sun D, Davis SL, et al. Smaller hippocampal CA1 subfield volume in posttraumatic stress disorder[J]. Depress Anxiety, 2018, 35(11): 1018-1029. DOI: 10.1002/da.22833.
[31]
Morey RA, Clarke EK, Haswell CC, et al. Amygdala nuclei volume and shape in military veterans with posttraumatic stress disorder[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2020, 5(3): 281-290. DOI: 10.1016/j.bpsc.2019.11.016.
[32]
Szeszko PR, Bierer LM, Bader HN, et al. Cingulate and hippocampal subregion abnormalities in combat-exposed veterans with PTSD[J]. J Affect Disord, 2022, 311: 432-439. DOI: 10.1016/j.jad.2022.05.081.
[33]
Kredlow MA, Fenster RJ, Laurent ES, et al. Prefrontal cortex, amygdala, and threat processing: implications for PTSD[J]. Neuropsychopharmacology, 2022, 47(1): 247-259. DOI: 10.1038/s41386-021-01155-7.
[34]
Hinojosa CA, George GC, Ben-Zion Z. Neuroimaging of posttraumatic stress disorder in adults and youth: progress over the last decade on three leading questions of the field[J]. Mol Psychiatry, 2024, 29(10): 3223-3244. DOI: 10.1038/s41380-024-02558-w.
[35]
Wang X, Xie H, Chen T, et al. Cortical volume abnormalities in posttraumatic stress disorder: an ENIGMA-psychiatric genomics consortium PTSD workgroup mega-analysis[J]. Mol Psychiatry, 2021, 26(8): 4331-4343. DOI: 10.1038/s41380-020-00967-1.
[36]
Logue MW, van Rooij SJH, Dennis EL, et al. Smaller hippocampal volume in posttraumatic stress disorder: a multisite ENIGMA-PGC study: subcortical volumetry results from posttraumatic stress disorder consortia[J]. Biol Psychiatry, 2018, 83(3): 244-253. DOI: 10.1016/j.biopsych.2017.09.006.
[37]
Dennis EL, Disner SG, Fani N, et al. Altered white matter microstructural organization in posttraumatic stress disorder across 3047 adults: results from the PGC-ENIGMA PTSD consortium [J]. Mol Psychiatry, 2021, 26(8): 4315-4330. DOI: 10.1038/s41380-019-0631-x.
[38]
Akiki TJ, Averill CL, Wrocklage KM, et al. The association of PTSD symptom severity with localized hippocampus and amygdala abnormalities[J]. Chronic Stress (Thousand Oaks), 2017, 1: 2470547017724069. DOI: 10.1177/2470547017724069.
[39]
Misaki M, Phillips R, Zotev V, et al. Real-time fMRI amygdala neurofeedback positive emotional training normalized resting-state functional connectivity in combat veterans with and without PTSD: a connectome-wide investigation[J]. Neuroimage Clin, 2018, 20: 543-555. DOI: 10.1016/j.nicl.2018.08.025.
[40]
Haris EM, Bryant RA, Williamson T, et al. Functional connectivity of amygdala subnuclei in PTSD: a narrative review[J]. Mol Psychiatry, 2023, 28(9): 3581-3594. DOI: 10.1038/s41380-023-02291-w.
[41]
Nicholson AA, Rabellino D, Densmore M, et al. Intrinsic connectivity network dynamics in PTSD during amygdala downregulation using real-time fMRI neurofeedback: a preliminary analysis[J]. Hum Brain Mapp, 2018, 39(11): 4258-4275. DOI: 10.1002/hbm.24244.
[42]
Misaki M, Phillips R, Zotev V, et al. Brain activity mediators of PTSD symptom reduction during real-time fMRI amygdala neurofeedback emotional training[J]. Neuroimage Clin, 2019, 24: 102047. DOI: 10.1016/j.nicl.2019.102047.
[43]
Dossi G, Delvecchio G, Prunas C, et al. Neural bases of cognitive impairments in post-traumatic stress disorders: a mini-review of functional magnetic resonance imaging findings[J]. Front Psychiatry, 2020, 11: 176. DOI: 10.3389/fpsyt.2020.00176.
[44]
Jagger-Rickels A, Stumps A, Rothlein D, et al. Impaired executive function exacerbates neural markers of posttraumatic stress disorder[J]. Psychol Med, 2021, 1-14. DOI: 10.1017/s0033291721000842.
[45]
Akiki TJ, Averill CL, Abdallah CG. A network-based neurobiological model of PTSD: evidence from structural and functional neuroimaging studies[J]. Curr Psychiatry Rep, 2017, 19(11): 81. DOI: 10.1007/s11920-017-0840-4.
[46]
Keefe JR, Suarez-Jimenez B, Zhu X, et al. Elucidating behavioral and functional connectivity markers of aberrant threat discrimination in PTSD[J]. Depress Anxiety, 2022, 39(12): 891-901. DOI: 10.1002/da.23295.
[47]
Crozier JC, Wang L, Huettel SA, et al. Neural correlates of cognitive and affective processing in maltreated youth with posttraumatic stress symptoms: does gender matter?[J] Dev Psychopathol, 2014, 26(2): 491-513. DOI: 10.1017/S095457941400016X.
[48]
Suo X, Zuo C, Lan H, et al. Multilayer network analysis of dynamic network reconfiguration in adults with posttraumatic stress disorder[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2023, 8(4): 452-461. DOI: 10.1016/j.bpsc.2022.09.003.
[49]
Beutler S, Mertens YL, Ladner L, et al. Trauma-related dissociation and the autonomic nervous system: a systematic literature review of psychophysiological correlates of dissociative experiencing in PTSD patients[J]. Eur J Psychotraumatol, 2022, 13(2): 2132599. DOI: 10.1080/20008066.2022.2132599.
[50]
Campbell AA, Wisco BE, Silvia PJ, et al. Resting respiratory sinus arrhythmia and posttraumatic stress disorder: a meta-analysis[J]. Biol Psychol, 2019, 144: 125-135. DOI: 10.1016/j.biopsycho.2019.02.005.
[51]
Campbell AA, Wisco BE. Respiratory sinus arrhythmia reactivity in anxiety and posttraumatic stress disorder: a review of literature[J]. Clin Psychol Rev, 2021, 87: 102034. DOI: 10.1016/j.cpr.2021.102034.
[52]
Schneider M, Schwerdtfeger A. Autonomic dysfunction in posttraumatic stress disorder indexed by heart rate variability: a meta-analysis[J]. Psychol Med, 2020, 50(12): 1937-1948. DOI: 10.1017/S003329172000207X.
[53]
Park JE, Lee JY, Kang SH, et al. Heart rate variability of chronic posttraumatic stress disorder in the Korean veterans[J]. Psychiatry Res, 2017, 255: 72-77. DOI: 10.1016/j.psychres.2017.05.011.
[54]
Wiltshire CN, Kouri N, Wanna CP, et al. Resting heart rate associations with violence exposure and posttraumatic stress symptoms: sex differences in children[J]. Biol Sex Differ, 2024, 15(1): 28. DOI: 10.1186/s13293-024-00606-2.
[55]
Sheikh SA, Shah AJ, Bremner JD, et al. Impedance cardiogram based exploration of cardiac mechanisms in post-traumatic stress disorder during trauma recall[J]. Psychophysiology, 2024, 61(4): e14488. DOI: 10.1111/psyp.14488.
[56]
Lori A, Schultebraucks K, Galatzer-Levy I, et al. Transcriptome-wide association study of post-trauma symptom trajectories identified GRIN3B as a potential biomarker for PTSD development [J]. Neuropsychopharmacology, 2021, 46(10): 1811-1820. DOI: 10.1038/s41386-021-01073-8.
[57]
Chevalier CM, Krampert L, Schreckenbach M, et al. MMP9 mRNA is a potential diagnostic and treatment monitoring marker for PTSD: evidence from mice and humans[J]. Eur Neuropsychopharmacol, 2021, 51: 20-32. DOI: 10.1016/j.euroneuro.2021.04.014.
[58]
Vishnoi A, Rani S. miRNA biogenesis and regulation of diseases: an updated overview[J]. Methods Mol Biol, 2023, 2595: 1-12. DOI: 10.1007/978-1-0716-2823-2_1.
[59]
Diener C, Keller A, Meese E. Emerging concepts of miRNA therapeutics: from cells to clinic[J]. Trends Genet, 2022, 38(6): 613-626. DOI: 10.1016/j.tig.2022.02.006.
[60]
Du X, Lv J, Feng J, et al. Plasma exosomes lncRNA-miRNA-mRNA network construction and its diagnostic efficacy identification in first-episode schizophrenia[J]. BMC Psychiatry, 2023, 23(1): 611. DOI: 10.1186/s12888-023-05052-9.
[61]
Paccosi E, Proietti-De-Santis L. Parkinson's disease: from genetics and epigenetics to treatment, a miRNA-based strategy[J]. Int J Mol Sci, 2023, 24(11): 9547. DOI: 10.3390/ijms24119547.
[62]
Gupta S, Guleria RS, Szabo YZ. MicroRNAs as biomarker and novel therapeutic target for posttraumatic stress disorder in veterans[J]. Psychiatry Res, 2021, 305: 114252. DOI: 10.1016/j.psychres.2021.114252.
[63]
Bam M, Yang X, Zumbrun EE, et al. Decreased AGO2 and DCR1 in PBMCs from war veterans with PTSD leads to diminished miRNA resulting in elevated inflammation[J]. Transl Psychiatry, 2017, 7(8): e1222. DOI: 10.1038/tp.2017.185.
[64]
Martin CG, Kim H, Yun S, et al. Circulating miRNA associated with posttraumatic stress disorder in a cohort of military combat veterans[J]. Psychiatry Res, 2017, 251: 261-265. DOI: 10.1016/j.psychres.2017.01.081
[65]
Rim EY, Clevers H, Nusse R. The Wnt pathway: from signaling mechanisms to synthetic modulators[J]. Annu Rev Biochem, 2022, 91: 571-598. DOI: 10.1146/annurev-biochem-040320-103615.
[66]
Berumen Sánchez G, Bunn KE, Pua HH, et al. Extracellular vesicles: mediators of intercellular communication in tissue injury and disease[J]. Cell Commun Signal, 2021, 19(1): 104. DOI: 10.1186/s12964-021-00787-y.
[67]
Garcia-Martin R, Wang G, Brandão BB, et al. MicroRNA sequence codes for small extracellular vesicle release and cellular retention[J]. Nature, 2022, 601(7893): 446-451. DOI: 10.1038/s41586-021-04234-3.
[68]
Guedes VA, Lai C, Devoto C, et al. Extracellular vesicle proteins and microRNAs are linked to chronic post-traumatic stress disorder symptoms in service members and veterans with mild traumatic brain injury[J]. Front Pharmacol, 2021, 12: 745348. DOI: 10.3389/fphar.2021.745348.
[69]
Lee MY, Baxter D, Scherler K, et al. Distinct profiles of cell-free microRNAs in plasma of veterans with post-traumatic stress disorder[J]. J Clin Med, 2019, 8(7): 963. DOI: 10.3390/jcm8070963.
[70]
Zhang L, Hu XZ, Li X, et al. Potential chemokine biomarkers associated with PTSD onset, risk and resilience as well as stress responses in US military service members[J]. Transl Psychiatry, 2020, 10(1): 31. DOI: 10.1038/s41398-020-0693-1.
[71]
Xu M, Lin Z, Siegel CE, et al. Screening for PTSD and TBI in veterans using routine clinical laboratory blood tests[J]. Transl Psychiatry, 2023, 13(1): 64. DOI: 10.1038/s41398-022-02298-x.
[72]
Meng X, Liu D, Guan Y. Advances in the application of label-free quantitative proteomics techniques in malignancy research[J]. Biomed Chromatogr, 2023, 37(7): e5667. DOI: 10.1002/bmc.5667.
[73]
Muhie S, Gautam A, Yang R, et al. Molecular signatures of post-traumatic stress disorder in war-zone-exposed veteran and active-duty soldiers[J]. Cell Rep Med, 2023, 4(5): 101045. DOI: 10.1016/j.xcrm.2023.101045.
[74]
Kuan PF, Clouston S, Yang X, et al. Molecular linkage between post-traumatic stress disorder and cognitive impairment: a targeted proteomics study of World Trade Center responders[J]. Transl Psychiatry, 2020, 10(1): 269. DOI: 10.1038/s41398-020-00958-4.
[75]
Waszczuk MA, Kuan PF, Yang X, et al. Discovery and replication of blood-based proteomic signature of PTSD in 9/11 responders[J]. Transl Psychiatry, 2023, 13(1): 8. DOI: 10.1038/s41398-022-02302-4.
[1] 王茹倩, 罗红, 曹威特. 子宫血管周上皮细胞瘤诊疗的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(02): 151-156.
[2] 安春晓, 彭丽娜, 张献, 张广美. 微小RNA 与子宫内膜异位症的相关研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(01): 73-77.
[3] 田学, 魏东坡, 孟潇潇, 谢晖, 王瑞兰. 生物信息学筛选相关肺纤维化诊断的生物标志物研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 534-539.
[4] 姚金平, 郭涛, 张逸辰, 常磊, 冯雨舟, 崔精, 陈建欢, 鲍传庆. 基于免疫微环境分析探讨FN1与DOCK2在结肠癌中的预后价值[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 333-344.
[5] 张睿敏, 董哲毅, 王倩, 陈香美. 肾小管间质纤维化生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 91-96.
[6] 章敏. 利用多组学技术筛选慢性肾脏病早期预警和预后标志物[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 120-120.
[7] 何许巍, 刘洋, 程庆砾, 敖强国. 急性肾损伤早期生物标志物即时检测的研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(01): 48-52.
[8] 王淑莹, 杨以太, 李泽萌, 任党利, 王景景, 陈月阳, 张慧敏, 孙洪涛. 七叶胆苷17通过影响AKT/NF-κB介导的神经炎症改善大鼠创伤后应激障碍样行为[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(02): 94-102.
[9] 杨以太, 王淑莹, 陈月阳, 王景景, 李泽萌, 任党利, 孙洪涛. 莪术醇通过调控eif2a/CHOP信号通路介导的细胞凋亡抑制创伤后应激障碍[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(02): 103-110.
[10] 张衡, 施歌, 张泽, 高振轩, 杨文强, 王琦, 张黎, 闫晋利. 基于血浆转录组学建立糖尿病周围神经病的生物标志物[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(02): 127-134.
[11] 吕一帆, 张斌, 茆翔, 刘佰运, 高国一, 牛非. 定量蛋白质组学分析皮质酮对急性创伤性脑损伤的神经保护作用[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(01): 17-25.
[12] 王美琴, 潘海涛, 陈祥菲, 吴婉, 周昱和, 王砚青. S100B 蛋白在心血管疾病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 229-233.
[13] 王颖, 杨焱焱, 牛雯晓, 李梦凡, 张金彪. 非体位性阻塞性睡眠呼吸暂停与认知功能障碍的相关性研究[J/OL]. 中华临床医师杂志(电子版), 2025, 19(02): 108-116.
[14] 石继开, 王平, 陈军. 基于胆固醇代谢相关基因构建前列腺癌复发的风险预测模型[J/OL]. 中华老年病研究电子杂志, 2025, 12(01): 22-29.
[15] 郑锐滨, 赵象文. 肥胖与非肥胖人群血清代谢激素谱的差异分析[J/OL]. 中华肥胖与代谢病电子杂志, 2025, 11(02): 100-103.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?