[1] |
Su YJ. PTSD and depression in adult burn patients three months postburn: the contribution of psychosocial factors[J]. Gen Hosp Psychiatry, 2023, 82: 33-40. DOI: 10.1016/j.genhosppsych.2023.03.004.
|
[2] |
Maercker A, Cloitre M, Bachem R, et al. Complex post-traumatic stress disorder[J]. Lancet, 2022, 400(10345): 60-72. DOI: 10.1016/S0140-6736(22)00821-2.
|
[3] |
Nanavati HD, Arevalo A, Memon AA, et al. Associations between posttraumatic stress and stroke: a systematic review and meta-analysis[J]. J Trauma Stress, 2023, 36(2): 259-271. DOI: 10.1002/jts.22925.
|
[4] |
van den Berk Clark C, Kansara V, Fedorova M, et al. How does PTSD treatment affect cardiovascular, diabetes and metabolic disease risk factors and outcomes? A systematic review[J]. J Psychosom Res, 2022, 157: 110793. DOI: 10.1016/j.jpsychores.2022.110793.
|
[5] |
Davis LL, Schein J, Cloutier M, et al. The economic burden of posttraumatic stress disorder in the United States from a societal perspective[J]. J Clin Psychiatry, 2022, 83(3): 21m14134. DOI: 10.4088/JCP.21m14134.
|
[6] |
Hansen M, Armour C, McGlinchey E, et al. Investigating the DSM-5 and the ICD-11 PTSD symptoms using network analysis across two distinct samples[J]. Psychol Trauma, 2023, 15(5): 757-766. DOI: 10.1037/tra0001281.
|
[7] |
Merians AN, Spiller T, Harpaz-Rotem I, et al. Post-traumatic stress disorder[J]. Med Clin North Am, 2023, 107(1): 85-99. DOI: 10.1016/j.mcna.2022.04.003.
|
[8] |
Lonnen E, Paskell R. Gender, sex and complex PTSD clinical presentation: a systematic review[J]. Eur J Psychotraumatol, 2024, 15(1): 2320994. DOI: 10.1080/20008066.2024.2320994.
|
[9] |
Petereit-Haack G, Bolm-Audorff U, Romero Starke K, et al. Occupational risk for post-traumatic stress disorder and trauma-related depression: a systematic review with meta-analysis[J]. Int J Environ Res Public Health, 2020, 17(24): 9369. DOI: 10.3390/ijerph17249369.
|
[10] |
Burback L, Brémault-Phillips S, Nijdam MJ, et al. Treatment of posttraumatic stress disorder: a state-of-the-art review[J]. Curr Neuropharmacol, 2024, 22(4): 557-635. DOI: 10.2174/1570159X21666230428091433.
|
[11] |
Diamond PR, Airdrie JN, Hiller R, et al. Change in prevalence of post-traumatic stress disorder in the two years following trauma: a meta-analytic study[J]. Eur J Psychotraumatol, 2022, 13(1): 2066456. DOI: 10.1080/20008198.2022.2066456.
|
[12] |
Koenen KC, Ratanatharathorn A, Ng L, et al. Posttraumatic stress disorder in the World Mental Health Surveys[J]. Psychol Med, 2017, 47(13): 2260-2274. DOI: DOI: 10.1017/S0033291717000708.
|
[13] |
Johnson RJ, Antonaccio O, Botchkovar E, et al. War trauma and PTSD in Ukraine's civilian population: comparing urban-dwelling to internally displaced persons[J]. Soc Psychiatry Psychiatr Epidemiol, 2022, 57(9): 1807-1816. DOI: 10.1007/s00127-021-02176-9.
|
[14] |
Ben-Ezra M, Goodwin R, Leshem E, et al. PTSD symptoms among civilians being displaced inside and outside the Ukraine during the 2022 Russian invasion[J]. Psychiatry Res, 2023, 320: 115011. DOI: 10.1016/j.psychres.2022.115011.
|
[15] |
Karatzias T, Shevlin M, Ben-Ezra M, et al. War exposure, posttraumatic stress disorder, and complex posttraumatic stress disorder among parents living in Ukraine during the Russian war[J]. Acta Psychiatr Scand, 2023, 147(3): 276-285. DOI: 10.1111/acps.13529.
|
[16] |
Skórzewska A, Lehner M, Wisłowska-Stanek A, et al. Individual susceptibility or resistance to posttraumatic stress disorder-like behaviours[J]. Behav Brain Res, 2020, 386: 112591. DOI: 10.1016/j.bbr.2020.112591.
|
[17] |
James LM, Georgopoulos AP. Immunogenetics of posttraumatic stress disorder (PTSD) in women veterans[J]. Brain Behav Immun Health, 2022, 26: 100567. DOI: 10.1016/j.bbih.2022.100567.
|
[18] |
Vaccarino V, Shah AJ, Moncayo V, et al. Posttraumatic stress disorder, myocardial perfusion, and myocardial blood flow: a longitudinal twin study[J]. Biol Psychiatry, 2022, 91(7): 615-625. DOI: 10.1016/j.biopsych.2021.09.016.
|
[19] |
Cusack SE, Maihofer AX, Bustamante D, et al. Genetic influences on testosterone and PTSD[J]. J Psychiatr Res, 2024, 174: 8-11. DOI: 10.1016/j.jpsychires.2024.04.002.
|
[20] |
Tseilikman VE, Tseilikman OB, Pashkov AA, et al. Mechanisms of susceptibility and resilience to PTSD: role of dopamine metabolism and BDNF expression in the hippocampus[J]. Int J Mol Sci, 2022, 23(23): 14575. DOI: 10.3390/ijms232314575.
|
[21] |
Le Tran N, Wang Y, Nie G. Podocalyxin in normal tissue and epithelial cancer[J]. Cancers (Basel), 2021, 13(12): 2863. DOI: 10.3390/cancers13122863.
|
[22] |
Mehlig K, Foraita R, Nagrani R, et al. Genetic associations vary across the spectrum of fasting serum insulin: results from the European IDEFICS/I. Family children's cohort[J]. Diabetologia, 2023, 66(10): 1914-1924. DOI: 10.1007/s00125-023-05957-w.
|
[23] |
Sanders SS, Hernandez LM, Soh H, et al. The palmitoyl acyltransferase ZDHHC14 controls Kv1-family potassium channel clustering at the axon initial segment[J]. Elife, 2020, 9: e56058. DOI: 10.7554/eLife.56058.
|
[24] |
Nievergelt CM, Maihofer AX, Klengel T, et al. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci[J]. Nat Commun, 2019, 10(1): 4558. DOI: 10.1038/s41467-019-12576-w.
|
[25] |
Parthasarathy R, Santiago F, McCluskey P, et al. The microbiome in HLA-B27-associated disease: implications for acute anterior uveitis and recommendations for future studies[J]. Trends Microbiol, 2023, 31(2): 142-158. DOI: 10.1016/j.tim.2022.08.008.
|
[26] |
Zhang X, Han Y, Liu X, et al. Assessment of genetic variants in D2 dopamine receptor (DRD2) gene as risk factors for post-traumatic stress disorder (PTSD) and major depressive disorder (MDD): a systematic review and meta-analysis[J]. J Affect Disord, 2023, 328: 312-323. DOI: 10.1016/j.jad.2023.02.001.
|
[27] |
Polimanti R, Wendt FR. Posttraumatic stress disorder: from gene discovery to disease biology[J]. Psychol Med, 2021, 51(13): 2178-2188. DOI: 10.1017/S0033291721000210.
|
[28] |
Stein MB, Levey DF, Cheng Z, et al. Genome-wide association analyses of post-traumatic stress disorder and its symptom subdomains in the Million Veteran Program[J]. Nat Genet, 2021, 53(2): 174-184. DOI: 10.1038/s41588-020-00767-x.
|
[29] |
Del Casale A, Ferracuti S, Barbetti AS, et al. Grey matter volume reductions of the left hippocampus and amygdala in PTSD: a coordinate-based meta-analysis of magnetic resonance imaging studies[J]. Neuropsychobiology, 2022, 81(4): 257-264. DOI: 10.1159/000522003.
|
[30] |
Chen LW, Sun D, Davis SL, et al. Smaller hippocampal CA1 subfield volume in posttraumatic stress disorder[J]. Depress Anxiety, 2018, 35(11): 1018-1029. DOI: 10.1002/da.22833.
|
[31] |
Morey RA, Clarke EK, Haswell CC, et al. Amygdala nuclei volume and shape in military veterans with posttraumatic stress disorder[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2020, 5(3): 281-290. DOI: 10.1016/j.bpsc.2019.11.016.
|
[32] |
Szeszko PR, Bierer LM, Bader HN, et al. Cingulate and hippocampal subregion abnormalities in combat-exposed veterans with PTSD[J]. J Affect Disord, 2022, 311: 432-439. DOI: 10.1016/j.jad.2022.05.081.
|
[33] |
Kredlow MA, Fenster RJ, Laurent ES, et al. Prefrontal cortex, amygdala, and threat processing: implications for PTSD[J]. Neuropsychopharmacology, 2022, 47(1): 247-259. DOI: 10.1038/s41386-021-01155-7.
|
[34] |
Hinojosa CA, George GC, Ben-Zion Z. Neuroimaging of posttraumatic stress disorder in adults and youth: progress over the last decade on three leading questions of the field[J]. Mol Psychiatry, 2024, 29(10): 3223-3244. DOI: 10.1038/s41380-024-02558-w.
|
[35] |
Wang X, Xie H, Chen T, et al. Cortical volume abnormalities in posttraumatic stress disorder: an ENIGMA-psychiatric genomics consortium PTSD workgroup mega-analysis[J]. Mol Psychiatry, 2021, 26(8): 4331-4343. DOI: 10.1038/s41380-020-00967-1.
|
[36] |
Logue MW, van Rooij SJH, Dennis EL, et al. Smaller hippocampal volume in posttraumatic stress disorder: a multisite ENIGMA-PGC study: subcortical volumetry results from posttraumatic stress disorder consortia[J]. Biol Psychiatry, 2018, 83(3): 244-253. DOI: 10.1016/j.biopsych.2017.09.006.
|
[37] |
Dennis EL, Disner SG, Fani N, et al. Altered white matter microstructural organization in posttraumatic stress disorder across 3047 adults: results from the PGC-ENIGMA PTSD consortium [J]. Mol Psychiatry, 2021, 26(8): 4315-4330. DOI: 10.1038/s41380-019-0631-x.
|
[38] |
Akiki TJ, Averill CL, Wrocklage KM, et al. The association of PTSD symptom severity with localized hippocampus and amygdala abnormalities[J]. Chronic Stress (Thousand Oaks), 2017, 1: 2470547017724069. DOI: 10.1177/2470547017724069.
|
[39] |
Misaki M, Phillips R, Zotev V, et al. Real-time fMRI amygdala neurofeedback positive emotional training normalized resting-state functional connectivity in combat veterans with and without PTSD: a connectome-wide investigation[J]. Neuroimage Clin, 2018, 20: 543-555. DOI: 10.1016/j.nicl.2018.08.025.
|
[40] |
Haris EM, Bryant RA, Williamson T, et al. Functional connectivity of amygdala subnuclei in PTSD: a narrative review[J]. Mol Psychiatry, 2023, 28(9): 3581-3594. DOI: 10.1038/s41380-023-02291-w.
|
[41] |
Nicholson AA, Rabellino D, Densmore M, et al. Intrinsic connectivity network dynamics in PTSD during amygdala downregulation using real-time fMRI neurofeedback: a preliminary analysis[J]. Hum Brain Mapp, 2018, 39(11): 4258-4275. DOI: 10.1002/hbm.24244.
|
[42] |
Misaki M, Phillips R, Zotev V, et al. Brain activity mediators of PTSD symptom reduction during real-time fMRI amygdala neurofeedback emotional training[J]. Neuroimage Clin, 2019, 24: 102047. DOI: 10.1016/j.nicl.2019.102047.
|
[43] |
Dossi G, Delvecchio G, Prunas C, et al. Neural bases of cognitive impairments in post-traumatic stress disorders: a mini-review of functional magnetic resonance imaging findings[J]. Front Psychiatry, 2020, 11: 176. DOI: 10.3389/fpsyt.2020.00176.
|
[44] |
Jagger-Rickels A, Stumps A, Rothlein D, et al. Impaired executive function exacerbates neural markers of posttraumatic stress disorder[J]. Psychol Med, 2021, 1-14. DOI: 10.1017/s0033291721000842.
|
[45] |
Akiki TJ, Averill CL, Abdallah CG. A network-based neurobiological model of PTSD: evidence from structural and functional neuroimaging studies[J]. Curr Psychiatry Rep, 2017, 19(11): 81. DOI: 10.1007/s11920-017-0840-4.
|
[46] |
Keefe JR, Suarez-Jimenez B, Zhu X, et al. Elucidating behavioral and functional connectivity markers of aberrant threat discrimination in PTSD[J]. Depress Anxiety, 2022, 39(12): 891-901. DOI: 10.1002/da.23295.
|
[47] |
Crozier JC, Wang L, Huettel SA, et al. Neural correlates of cognitive and affective processing in maltreated youth with posttraumatic stress symptoms: does gender matter?[J] Dev Psychopathol, 2014, 26(2): 491-513. DOI: 10.1017/S095457941400016X.
|
[48] |
Suo X, Zuo C, Lan H, et al. Multilayer network analysis of dynamic network reconfiguration in adults with posttraumatic stress disorder[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2023, 8(4): 452-461. DOI: 10.1016/j.bpsc.2022.09.003.
|
[49] |
Beutler S, Mertens YL, Ladner L, et al. Trauma-related dissociation and the autonomic nervous system: a systematic literature review of psychophysiological correlates of dissociative experiencing in PTSD patients[J]. Eur J Psychotraumatol, 2022, 13(2): 2132599. DOI: 10.1080/20008066.2022.2132599.
|
[50] |
Campbell AA, Wisco BE, Silvia PJ, et al. Resting respiratory sinus arrhythmia and posttraumatic stress disorder: a meta-analysis[J]. Biol Psychol, 2019, 144: 125-135. DOI: 10.1016/j.biopsycho.2019.02.005.
|
[51] |
Campbell AA, Wisco BE. Respiratory sinus arrhythmia reactivity in anxiety and posttraumatic stress disorder: a review of literature[J]. Clin Psychol Rev, 2021, 87: 102034. DOI: 10.1016/j.cpr.2021.102034.
|
[52] |
Schneider M, Schwerdtfeger A. Autonomic dysfunction in posttraumatic stress disorder indexed by heart rate variability: a meta-analysis[J]. Psychol Med, 2020, 50(12): 1937-1948. DOI: 10.1017/S003329172000207X.
|
[53] |
Park JE, Lee JY, Kang SH, et al. Heart rate variability of chronic posttraumatic stress disorder in the Korean veterans[J]. Psychiatry Res, 2017, 255: 72-77. DOI: 10.1016/j.psychres.2017.05.011.
|
[54] |
Wiltshire CN, Kouri N, Wanna CP, et al. Resting heart rate associations with violence exposure and posttraumatic stress symptoms: sex differences in children[J]. Biol Sex Differ, 2024, 15(1): 28. DOI: 10.1186/s13293-024-00606-2.
|
[55] |
Sheikh SA, Shah AJ, Bremner JD, et al. Impedance cardiogram based exploration of cardiac mechanisms in post-traumatic stress disorder during trauma recall[J]. Psychophysiology, 2024, 61(4): e14488. DOI: 10.1111/psyp.14488.
|
[56] |
Lori A, Schultebraucks K, Galatzer-Levy I, et al. Transcriptome-wide association study of post-trauma symptom trajectories identified GRIN3B as a potential biomarker for PTSD development [J]. Neuropsychopharmacology, 2021, 46(10): 1811-1820. DOI: 10.1038/s41386-021-01073-8.
|
[57] |
Chevalier CM, Krampert L, Schreckenbach M, et al. MMP9 mRNA is a potential diagnostic and treatment monitoring marker for PTSD: evidence from mice and humans[J]. Eur Neuropsychopharmacol, 2021, 51: 20-32. DOI: 10.1016/j.euroneuro.2021.04.014.
|
[58] |
Vishnoi A, Rani S. miRNA biogenesis and regulation of diseases: an updated overview[J]. Methods Mol Biol, 2023, 2595: 1-12. DOI: 10.1007/978-1-0716-2823-2_1.
|
[59] |
Diener C, Keller A, Meese E. Emerging concepts of miRNA therapeutics: from cells to clinic[J]. Trends Genet, 2022, 38(6): 613-626. DOI: 10.1016/j.tig.2022.02.006.
|
[60] |
Du X, Lv J, Feng J, et al. Plasma exosomes lncRNA-miRNA-mRNA network construction and its diagnostic efficacy identification in first-episode schizophrenia[J]. BMC Psychiatry, 2023, 23(1): 611. DOI: 10.1186/s12888-023-05052-9.
|
[61] |
Paccosi E, Proietti-De-Santis L. Parkinson's disease: from genetics and epigenetics to treatment, a miRNA-based strategy[J]. Int J Mol Sci, 2023, 24(11): 9547. DOI: 10.3390/ijms24119547.
|
[62] |
Gupta S, Guleria RS, Szabo YZ. MicroRNAs as biomarker and novel therapeutic target for posttraumatic stress disorder in veterans[J]. Psychiatry Res, 2021, 305: 114252. DOI: 10.1016/j.psychres.2021.114252.
|
[63] |
Bam M, Yang X, Zumbrun EE, et al. Decreased AGO2 and DCR1 in PBMCs from war veterans with PTSD leads to diminished miRNA resulting in elevated inflammation[J]. Transl Psychiatry, 2017, 7(8): e1222. DOI: 10.1038/tp.2017.185.
|
[64] |
Martin CG, Kim H, Yun S, et al. Circulating miRNA associated with posttraumatic stress disorder in a cohort of military combat veterans[J]. Psychiatry Res, 2017, 251: 261-265. DOI: 10.1016/j.psychres.2017.01.081
|
[65] |
|
[66] |
Berumen Sánchez G, Bunn KE, Pua HH, et al. Extracellular vesicles: mediators of intercellular communication in tissue injury and disease[J]. Cell Commun Signal, 2021, 19(1): 104. DOI: 10.1186/s12964-021-00787-y.
|
[67] |
Garcia-Martin R, Wang G, Brandão BB, et al. MicroRNA sequence codes for small extracellular vesicle release and cellular retention[J]. Nature, 2022, 601(7893): 446-451. DOI: 10.1038/s41586-021-04234-3.
|
[68] |
Guedes VA, Lai C, Devoto C, et al. Extracellular vesicle proteins and microRNAs are linked to chronic post-traumatic stress disorder symptoms in service members and veterans with mild traumatic brain injury[J]. Front Pharmacol, 2021, 12: 745348. DOI: 10.3389/fphar.2021.745348.
|
[69] |
Lee MY, Baxter D, Scherler K, et al. Distinct profiles of cell-free microRNAs in plasma of veterans with post-traumatic stress disorder[J]. J Clin Med, 2019, 8(7): 963. DOI: 10.3390/jcm8070963.
|
[70] |
Zhang L, Hu XZ, Li X, et al. Potential chemokine biomarkers associated with PTSD onset, risk and resilience as well as stress responses in US military service members[J]. Transl Psychiatry, 2020, 10(1): 31. DOI: 10.1038/s41398-020-0693-1.
|
[71] |
Xu M, Lin Z, Siegel CE, et al. Screening for PTSD and TBI in veterans using routine clinical laboratory blood tests[J]. Transl Psychiatry, 2023, 13(1): 64. DOI: 10.1038/s41398-022-02298-x.
|
[72] |
Meng X, Liu D, Guan Y. Advances in the application of label-free quantitative proteomics techniques in malignancy research[J]. Biomed Chromatogr, 2023, 37(7): e5667. DOI: 10.1002/bmc.5667.
|
[73] |
Muhie S, Gautam A, Yang R, et al. Molecular signatures of post-traumatic stress disorder in war-zone-exposed veteran and active-duty soldiers[J]. Cell Rep Med, 2023, 4(5): 101045. DOI: 10.1016/j.xcrm.2023.101045.
|
[74] |
Kuan PF, Clouston S, Yang X, et al. Molecular linkage between post-traumatic stress disorder and cognitive impairment: a targeted proteomics study of World Trade Center responders[J]. Transl Psychiatry, 2020, 10(1): 269. DOI: 10.1038/s41398-020-00958-4.
|
[75] |
Waszczuk MA, Kuan PF, Yang X, et al. Discovery and replication of blood-based proteomic signature of PTSD in 9/11 responders[J]. Transl Psychiatry, 2023, 13(1): 8. DOI: 10.1038/s41398-022-02302-4.
|