[1] |
Arun P, Wilder DM, Morris AJ, et al. Cerebrospinal fluid levels of lysophosphatidic acids can provide suitable biomarkers of blast-induced traumatic brain injury[J]. J Neurotrauma, 2023, 40(21-22): 2289-2296. DOI: 10.1089/neu.2023.0087.
|
[2] |
Tovar MA, Bell RS, Neal CJ. Epidemiology of blast neurotrauma: a meta-analysis of blast injury patterns in the military and civilian populations[J]. World Neurosurg, 2021, 146: 308-314.e3. DOI: 10.1016/j.wneu.2020.11.093.
|
[3] |
Defense DO. Report to congress on expenditures for activities on traumatic brain injury and psychological health, including posttraumatic stress disorder for 2010[R]. Washington, DC: Department of Defense, 2011.
|
[4] |
Lindberg MA, Kiser SA, Moy Martin EM. Mild TBI/concussion clinical tools for providers used within the department of defense and defense health agency[J]. Fed Pract, 2020, 37(9): 410-419. DOI: 10.12788/fp.0044.
|
[5] |
Nakarmi S, Wang Y, Fawzi AL, et al. Estimating brain injury risk from shipborne underwater blasts using a high-fidelity finite element head model[J]. Mil Med, 2025, 190(1-2): e202-e210. DOI: 10.1093/milmed/usae309.
|
[6] |
Bradshaw J, Brown M, Jiang S, et al. 3D computational modeling of blast wave transmission in human ear from external ear to cochlear hair cells: a preliminary study[J]. Mil Med, 2024, 189(Suppl 3): 291-297. DOI: 10.1093/milmed/usae096.
|
[7] |
|
[8] |
|
[9] |
Madhukar A, Ostoja-Starzewski M. Finite element methods in human head impact simulations: a review[J]. Ann Biomed Eng, 2019, 47(9): 1832-1854. DOI: 10.1007/s10439-019-02205-4.
|
[10] |
Meng Y, Buckland E, Untaroiu C. Numerical investigation of driver injury risks in car-to-end terminal crashes using a human finite element model[J]. Comput Methods Biomech Biomed Engin, 2024, online ahead of print. DOI: 10.1080/10255842.2024.2387223.
|
[11] |
Chen Y, Ostoja-Starzewski M. MRI-based finite element modeling of head trauma: spherically focusing shear waves[J]. Acta Mechanica, 2010, 213(1): 155-167. DOI: 10.1007/s00707-009-0274-0.
|
[12] |
Gomes MS, Carmo GP, Ptak M, et al. Accuracy and efficiency of finite element head models: the role of finite element formulation and material laws[J]. Int J Numer Method Biomed Eng, 2024, 40(9): e3851. DOI: 10.1002/cnm.3851.
|
[13] |
Hosey RR, Liu YK. A homeomorphic finite element model of the human head and neck[C]//Gallagher PH, Simon BR, Johnson TC, et al. Finite Element in Biomechanics. New York: Wiley, 1982: 379-401.
|
[14] |
Miller LE, Urban JE, Stitzel JD. Validation performance comparison for finite element models of the human brain[J]. Comput Methods Biomech Biomed Engin, 2017, 20(12): 1273-1288. DOI: 10.1080/10255842.2017.1340462.
|
[15] |
Rycman A, Bustamante M, Cronin DS. Brain material properties and integration of arachnoid complex for biofidelic impact response for human head finite element model[J]. Ann Biomed Eng, 2024, 52(4): 908-919. DOI: 10.1007/s10439-023-03428-2.
|
[16] |
Piotrowski R, Szychowski A. Evaluation of the influence of bolt fastener spacing on the elastic critical load from the lateral-torsional buckling condition of built-up bending members[J]. Materials (Basel), 2024, 17(14): 3392. DOI: 10.3390/ma17143392.
|
[17] |
Wronski S, Wit A, Tarasiuk J, et al. The impact of the parameters of the constitutive model on the distribution of strain in the femoral head[J]. Biomech Model Mechanobiol, 2023, 22(2): 739-759. DOI: 10.1007/s10237-022-01678-y.
|
[18] |
Huri D. Prediction accuracy of hyperelastic material models for rubber bumper under compressive load[J]. Polymers (Basel), 2024, 16(17): 2534. DOI: 10.3390/polym16172534.
|
[19] |
Pratap V, Kumar P, Rao C, et al. Modelling fourth-order hyperelasticity in soft solids using physics informed neural networks without labelled data[J]. Brain Res Bull, 2025, 224: 111318. DOI: 10.1016/j.brainresbull.2025.111318.
|
[20] |
Zimmerman KA, Kim J, Karton C, et al. Player position in American football influences the magnitude of mechanical strains produced in the location of chronic traumatic encephalopathy pathology: a computational modelling study[J]. J Biomech, 2021, 118: 110256. DOI: 10.1016/j.jbiomech.2021.110256.
|
[21] |
Akula P, Hua Y, Gu L. Role of frontal sinus on primary blast-induced traumatic brain injury[J]. J Med Device, 2013, 7(3): 030925.
|
[22] |
Sundaramurthy A, Kote VB, Pearson N, et al. A 3-D finite-element minipig model to assess brain biomechanical responses to blast exposure[J]. Front Bioeng Biotechnol, 2021, 9: 757755. DOI: 10.3389/fbioe.2021.757755.
|
[23] |
Unnikrishnan G, Mao H, Sundaramurthy A, et al. A 3-D rat brain model for blast-wave exposure: effects of brain vasculature and material properties[J]. Ann Biomed Eng, 2019, 47(9): 2033-2044. DOI: 10.1007/s10439-019-02277-2.
|
[24] |
Salimi Jazi M, Rezaei A, Azarmi F, et al. Computational biomechanics of human brain with and without the inclusion of the body under different blast orientation[J]. Comput Methods Biomech Biomed Engin, 2016, 19(9): 1019-1031. DOI: 10.1080/10255842.2015.1088525.
|
[25] |
Li X. Subject-specific head model generation by mesh morphing: a personalization framework and its applications[J]. Front Bioeng Biotechnol, 2021, 9: 706566. DOI: 10.3389/fbioe.2021.706566.
|
[26] |
Donat CK, Yanez Lopez M, Sastre M, et al. From biomechanics to pathology: predicting axonal injury from patterns of strain after traumatic brain injury[J]. Brain, 2021, 144(1): 70-91. DOI: 10.1093/brain/awaa336.
|
[27] |
Giudice JS, Zeng W, Wu T, et al. An analytical review of the numerical methods used for finite element modeling of traumatic brain injury[J]. Ann Biomed Eng, 2019, 47(9): 1855-1872. DOI: 10.1007/s10439-018-02161-5.
|
[28] |
|
[29] |
|
[30] |
Nakarmi S, Wang Y, Fawzi AL, et al. Estimating brain injury risk from shipborne underwater blasts using a high-fidelity finite element head model[J]. Mil Med, 2025, 190(1-2): e202-e210. DOI: 10.1093/milmed/usae309.
|
[31] |
Fish L, Scharre P. Protecting Warfighters from Blast Injury[R]. Washington, DC: Center for a New American Security, 2018.
|
[32] |
Op't Eynde J, Yu AW, Eckersley CP, et al. Primary blast wave protection in combat helmet design: a historical comparison between present day and World War I[J]. PLoS One, 2020, 15(2): e0228802. DOI: 10.1371/journal.pone.0228802.
|
[33] |
Sarvghad-Moghaddam H, Rezaei A, Ziejewski M, et al. Evaluation of brain tissue responses because of the underwash overpressure of helmet and faceshield under blast loading[J]. Int J Numer Method Biomed Eng, 2017, 33(1): e02782. DOI: 10.1002/cnm.2782.
|
[34] |
Wang Z, Duan S, Liu W, et al. Design of mechanics-guided helmet pad and its protection performance against the blast shock waves[J]. Int J Numer Method Biomed Eng, 2024, 40(12): e3882. DOI: 10.1002/cnm.3882.
|