切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2025, Vol. 11 ›› Issue (03) : 180 -184. doi: 10.3877/cma.j.issn.2095-9141.2025.03.007

综述

颅脑爆震伤有限元建模及生物力学仿真分析的研究进展
李彦腾, 程岗, 张剑宁()   
  1. 100853 北京,解放军总医院第一医学中心神经外科医学部
  • 收稿日期:2024-08-25 出版日期:2025-06-15
  • 通信作者: 张剑宁

Progress in finite element model and biomechanical simulation analysis of blast-induced traumatic brain injury

Yanteng Li, Gang Cheng, Jianning Zhang()   

  1. Department of Neurosurgery, First Medical Center, PLA General Hospital, Beijing 100853, China
  • Received:2024-08-25 Published:2025-06-15
  • Corresponding author: Jianning Zhang
  • Supported by:
    Innovative Research Incubation Project of Senior Department of Neurosurgery of PLA General Hospital(SWXB-FH-002)
引用本文:

李彦腾, 程岗, 张剑宁. 颅脑爆震伤有限元建模及生物力学仿真分析的研究进展[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(03): 180-184.

Yanteng Li, Gang Cheng, Jianning Zhang. Progress in finite element model and biomechanical simulation analysis of blast-induced traumatic brain injury[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2025, 11(03): 180-184.

颅脑爆震伤(bTBI)在现代战争中发生率较高,冲击波是其主要致伤因素。但目前bTBI的生物力学机制仍存在较多争议。有限元模型(FEM)能够分析物体间及物体内部复杂的力学变化规律,并预测其响应效果。本文针对bTBI的FEM建立及其生物力学仿真分析方面的研究进展作一综述,以期为阐明bTBI的生物力学机制及防护措施的研制提供参考。

Blast-induced traumatic brain injury (bTBI) has a high incidence in modern warfare, and shockwave is the main injury factor. However, the biomechanical mechanism of bTBI is still controversial. Finite element model (FEM) is able to analyze the complex mechanical change rules between and within objects and predict the response effects. In this paper, a review of the research on the establishment of FEM and its biomechanical simulation analysis of bTBI is presented, in order to provide reference for the clarification of the biomechanical mechanism of bTBI and the development of its protective measures.

表1 常用的模拟颅脑硬组织的线性弹性材料参数
Tab.1 Parameters for linear elastic materials used to model stiff tissues
表2 常用的模拟颅脑软组织的线性黏弹性材料参数
Tab.2 Parameters for linear viscoelastic materials used to model soft brain tissues
[1]
Arun P, Wilder DM, Morris AJ, et al. Cerebrospinal fluid levels of lysophosphatidic acids can provide suitable biomarkers of blast-induced traumatic brain injury[J]. J Neurotrauma, 2023, 40(21-22): 2289-2296. DOI: 10.1089/neu.2023.0087.
[2]
Tovar MA, Bell RS, Neal CJ. Epidemiology of blast neurotrauma: a meta-analysis of blast injury patterns in the military and civilian populations[J]. World Neurosurg, 2021, 146: 308-314.e3. DOI: 10.1016/j.wneu.2020.11.093.
[3]
Defense DO. Report to congress on expenditures for activities on traumatic brain injury and psychological health, including posttraumatic stress disorder for 2010[R]. Washington, DC: Department of Defense, 2011.
[4]
Lindberg MA, Kiser SA, Moy Martin EM. Mild TBI/concussion clinical tools for providers used within the department of defense and defense health agency[J]. Fed Pract, 2020, 37(9): 410-419. DOI: 10.12788/fp.0044.
[5]
Nakarmi S, Wang Y, Fawzi AL, et al. Estimating brain injury risk from shipborne underwater blasts using a high-fidelity finite element head model[J]. Mil Med, 2025, 190(1-2): e202-e210. DOI: 10.1093/milmed/usae309.
[6]
Bradshaw J, Brown M, Jiang S, et al. 3D computational modeling of blast wave transmission in human ear from external ear to cochlear hair cells: a preliminary study[J]. Mil Med, 2024, 189(Suppl 3): 291-297. DOI: 10.1093/milmed/usae096.
[7]
宋志明,陈检明,钟京,等.胸部爆炸伤紧急救治临床指南(2022年)[J].中华创伤杂志, 2022, 38(1): 11-22. DOI: 10.3760/cma.j.cn501098-20210824-00459.
[8]
张剑宁,程岗.颅脑战创伤机制及救治研究进展[J].中国现代医学杂志, 2021, 31(9): 1-6. DOI: 10.3969/j.issn.1005-8982.2021.09.001.
[9]
Madhukar A, Ostoja-Starzewski M. Finite element methods in human head impact simulations: a review[J]. Ann Biomed Eng, 2019, 47(9): 1832-1854. DOI: 10.1007/s10439-019-02205-4.
[10]
Meng Y, Buckland E, Untaroiu C. Numerical investigation of driver injury risks in car-to-end terminal crashes using a human finite element model[J]. Comput Methods Biomech Biomed Engin, 2024, online ahead of print. DOI: 10.1080/10255842.2024.2387223.
[11]
Chen Y, Ostoja-Starzewski M. MRI-based finite element modeling of head trauma: spherically focusing shear waves[J]. Acta Mechanica, 2010, 213(1): 155-167. DOI: 10.1007/s00707-009-0274-0.
[12]
Gomes MS, Carmo GP, Ptak M, et al. Accuracy and efficiency of finite element head models: the role of finite element formulation and material laws[J]. Int J Numer Method Biomed Eng, 2024, 40(9): e3851. DOI: 10.1002/cnm.3851.
[13]
Hosey RR, Liu YK. A homeomorphic finite element model of the human head and neck[C]//Gallagher PH, Simon BR, Johnson TC, et al. Finite Element in Biomechanics. New York: Wiley, 1982: 379-401.
[14]
Miller LE, Urban JE, Stitzel JD. Validation performance comparison for finite element models of the human brain[J]. Comput Methods Biomech Biomed Engin, 2017, 20(12): 1273-1288. DOI: 10.1080/10255842.2017.1340462.
[15]
Rycman A, Bustamante M, Cronin DS. Brain material properties and integration of arachnoid complex for biofidelic impact response for human head finite element model[J]. Ann Biomed Eng, 2024, 52(4): 908-919. DOI: 10.1007/s10439-023-03428-2.
[16]
Piotrowski R, Szychowski A. Evaluation of the influence of bolt fastener spacing on the elastic critical load from the lateral-torsional buckling condition of built-up bending members[J]. Materials (Basel), 2024, 17(14): 3392. DOI: 10.3390/ma17143392.
[17]
Wronski S, Wit A, Tarasiuk J, et al. The impact of the parameters of the constitutive model on the distribution of strain in the femoral head[J]. Biomech Model Mechanobiol, 2023, 22(2): 739-759. DOI: 10.1007/s10237-022-01678-y.
[18]
Huri D. Prediction accuracy of hyperelastic material models for rubber bumper under compressive load[J]. Polymers (Basel), 2024, 16(17): 2534. DOI: 10.3390/polym16172534.
[19]
Pratap V, Kumar P, Rao C, et al. Modelling fourth-order hyperelasticity in soft solids using physics informed neural networks without labelled data[J]. Brain Res Bull, 2025, 224: 111318. DOI: 10.1016/j.brainresbull.2025.111318.
[20]
Zimmerman KA, Kim J, Karton C, et al. Player position in American football influences the magnitude of mechanical strains produced in the location of chronic traumatic encephalopathy pathology: a computational modelling study[J]. J Biomech, 2021, 118: 110256. DOI: 10.1016/j.jbiomech.2021.110256.
[21]
Akula P, Hua Y, Gu L. Role of frontal sinus on primary blast-induced traumatic brain injury[J]. J Med Device, 2013, 7(3): 030925.
[22]
Sundaramurthy A, Kote VB, Pearson N, et al. A 3-D finite-element minipig model to assess brain biomechanical responses to blast exposure[J]. Front Bioeng Biotechnol, 2021, 9: 757755. DOI: 10.3389/fbioe.2021.757755.
[23]
Unnikrishnan G, Mao H, Sundaramurthy A, et al. A 3-D rat brain model for blast-wave exposure: effects of brain vasculature and material properties[J]. Ann Biomed Eng, 2019, 47(9): 2033-2044. DOI: 10.1007/s10439-019-02277-2.
[24]
Salimi Jazi M, Rezaei A, Azarmi F, et al. Computational biomechanics of human brain with and without the inclusion of the body under different blast orientation[J]. Comput Methods Biomech Biomed Engin, 2016, 19(9): 1019-1031. DOI: 10.1080/10255842.2015.1088525.
[25]
Li X. Subject-specific head model generation by mesh morphing: a personalization framework and its applications[J]. Front Bioeng Biotechnol, 2021, 9: 706566. DOI: 10.3389/fbioe.2021.706566.
[26]
Donat CK, Yanez Lopez M, Sastre M, et al. From biomechanics to pathology: predicting axonal injury from patterns of strain after traumatic brain injury[J]. Brain, 2021, 144(1): 70-91. DOI: 10.1093/brain/awaa336.
[27]
Giudice JS, Zeng W, Wu T, et al. An analytical review of the numerical methods used for finite element modeling of traumatic brain injury[J]. Ann Biomed Eng, 2019, 47(9): 1855-1872. DOI: 10.1007/s10439-018-02161-5.
[28]
李彦腾,程岗,刘帅,等.舰船邻舱爆炸致比格犬脑损伤的实验研究[J].解放军医学杂志, 2017, 42(3): 234-238. DOI: 10.11855/j.issn.0577-7402.2017.03.11.
[29]
李彦腾,程岗,魏铂沅,等.水下爆炸致水面泅渡战位比格犬脑和肺的损伤特点[J].第二军医大学学报, 2021, 42(7): 755-761. DOI: 10.16781/j.0258-879x.2021.07.0755.
[30]
Nakarmi S, Wang Y, Fawzi AL, et al. Estimating brain injury risk from shipborne underwater blasts using a high-fidelity finite element head model[J]. Mil Med, 2025, 190(1-2): e202-e210. DOI: 10.1093/milmed/usae309.
[31]
Fish L, Scharre P. Protecting Warfighters from Blast Injury[R]. Washington, DC: Center for a New American Security, 2018.
[32]
Op't Eynde J, Yu AW, Eckersley CP, et al. Primary blast wave protection in combat helmet design: a historical comparison between present day and World War I[J]. PLoS One, 2020, 15(2): e0228802. DOI: 10.1371/journal.pone.0228802.
[33]
Sarvghad-Moghaddam H, Rezaei A, Ziejewski M, et al. Evaluation of brain tissue responses because of the underwash overpressure of helmet and faceshield under blast loading[J]. Int J Numer Method Biomed Eng, 2017, 33(1): e02782. DOI: 10.1002/cnm.2782.
[34]
Wang Z, Duan S, Liu W, et al. Design of mechanics-guided helmet pad and its protection performance against the blast shock waves[J]. Int J Numer Method Biomed Eng, 2024, 40(12): e3882. DOI: 10.1002/cnm.3882.
[1] 钟永洌, 张杰, 张志奇. 外翻膝术后中立位机械对线的早中期疗效[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 366-373.
[2] 何懿杰, 钟国庆, 严渊, 谢珍艳, 蔡悦鹏, 林金鹏, 黄文汉, 李丽萍, 张余. 大学生运动相关下肢损伤与下坡行走的步态运动学关联[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 283-291.
[3] 覃辉, 钟珊, 白凡, 李陈良, 罗伦. 关节镜术后冲击波干预对膝关节炎患者的影响[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 729-735.
[4] 谭小东, 代强, 张瑾, 黄鹏, 张鑫, 陈珊珊, 朱红学, 汪自力. 急诊行体外冲击波碎石术治疗输尿管结石临床疗效的影响因素分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 359-364.
[5] 王源钊, 翁铭芳, 孙星慧. 输尿管上段结石体外冲击波碎石术后输尿管上段破裂一例报告[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 240-242.
[6] 王星棋, 申吉泓. 单支网片全尿道悬吊联合后盆生物力学重建术的临床应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 1-6.
[7] 杜小艳, 高晓宇, 新苏雅拉图. 肩袖撕裂解剖危险因素及生物力学研究进展[J/OL]. 中华肩肘外科电子杂志, 2025, 13(03): 173-178.
[8] 刘伟, 何永锐, 吕轶伦, 高斌礼. 肩胛骨骨折的治疗进展[J/OL]. 中华肩肘外科电子杂志, 2025, 13(01): 50-55.
[9] 张琛朋, 王靖, 曾塬杰, 高鹏, 陈昕彤. 反式全肩关节置换术的研究进展[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 373-376.
[10] 乔凯, 田康, 陈琦, 邹吉扬, 李杰, 张卫国. 不同股骨假体屈曲角下人工膝关节生物力学特征的有限元分析[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(02): 65-76.
[11] 邓瑞晨, 魏新运, 肖洪岩, 杨伟胤, 谢云岗. 下肢生物力学评估在部分足踝疾病中的应用探究[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(02): 77-86.
[12] 邓瑞晨, 肖洪岩, 魏新运, 杨伟胤, 谢云岗. 基于下肢生物力学评估经皮微创空心螺钉内固定治疗跟骨骨折的临床研究[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(01): 46-51.
[13] 陈靖, 刘天奇, 王莉莉, 尹立全. 体外冲击波治疗脑卒中后肌痉挛的Meta分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(06): 334-340.
[14] 赵文锋, 贾建业, 张弋, 夏溟, 董洋, 韩从辉, 金思彤, 李建波, 贾志刚, 刘鹏飞, 许长宝, 程跃. 体外冲击波碎石术治疗儿童上尿路结石的现况调查[J/OL]. 中华临床医师杂志(电子版), 2025, 19(04): 243-247.
[15] 卢慧芳, 危小良, 宋立争, 邹志壮, 陈柏荣. 冲击波球囊在急性冠脉综合征并冠状动脉严重钙化病变介入治疗中的安全性和有效性[J/OL]. 中华介入放射学电子杂志, 2025, 13(02): 128-134.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?