切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2021, Vol. 07 ›› Issue (05) : 305 -309. doi: 10.3877/cma.j.issn.2095-9141.2021.05.011

综述

外泌体的神经免疫调节功能在脊髓损伤修复中作用的研究进展
丁华1, 张磊1, 袁即山1, 樊晓臣1, 姚翔1, 吕斌2,()   
  1. 1. 212002 江苏镇江,江苏大学附属人民医院骨科
    2. 430022 武汉,华中科技大学同济医学院附属协和医院骨科
  • 收稿日期:2020-10-29 出版日期:2021-10-15
  • 通信作者: 吕斌
  • 基金资助:
    江苏省卫生健康委员会医学科研项目(Z2020003、Z20200058); 镇江市重点研发计划(社会发展)项目(SH2019085); 江苏大学临床医学科技发展基金(JLY2021010、JLY2021012); 江苏大学研究生创新计划项目(SJCX21-1725)

Research advances in neuroimmunomodulatory function of exosomes in spinal cord injury repair

Hua Ding1, Lei Zhang1, Jishan Yuan1, Xiaochen Fan1, Xiang Yao1, Bin Lyu2,()   

  1. 1. Department of Orthopaedics, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212002, China
    2. Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
  • Received:2020-10-29 Published:2021-10-15
  • Corresponding author: Bin Lyu
引用本文:

丁华, 张磊, 袁即山, 樊晓臣, 姚翔, 吕斌. 外泌体的神经免疫调节功能在脊髓损伤修复中作用的研究进展[J/OL]. 中华神经创伤外科电子杂志, 2021, 07(05): 305-309.

Hua Ding, Lei Zhang, Jishan Yuan, Xiaochen Fan, Xiang Yao, Bin Lyu. Research advances in neuroimmunomodulatory function of exosomes in spinal cord injury repair[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2021, 07(05): 305-309.

脊髓损伤(SCI)是脊髓在外部因素的作用下完整性遭到破坏而出现机体以下的运动、感觉和自主神经功能暂时或永久的丧失。外泌体是细胞自身分泌的一种直径40~100 nm的细胞外囊泡,能够作为运输载体参与免疫反应中的细胞间信号转导,有效减少脊髓神经细胞损伤。目前免疫细胞以及外泌体在SCI中的具体作用和对后续炎症影响的机制仍不明确。本文旨在探索SCI后免疫细胞与外泌体的神经免疫调控的机制及新的治疗靶点以及改善预后的新方案。

Spinal cord injury (SCI) is a temporary or permanent loss of motor, sensory and autonomic nerve functions below the body due to the destruction of the integrity of the spinal cord under the action of external factors. Exosomes are extracellular vesicles with a diameter of 40 to 100 nm secreted by cells themselves. They can be used as transport carriers to participate in intercellular signal transduction in immune response and effectively reduce spinal cord nerve cell injury. At present, the specific role of immune cells and exosomes in SCI and the mechanism of their effect on subsequent inflammation remain unclear. The purpose of this review is to explore the mechanism of neuro-immune regulation of immune cells and exosomes after SCI, as well as new therapeutic targets and new schemes for improved healing.

[1]
魏梁锋.颈椎后路椎板切除脊髓内减压术治疗急性创伤性颈髓损伤[J].中华神经创伤外科电子杂志, 2016, 2(3): 191-192.
[2]
赵继宗.脊髓损伤再生修复及临床转化研究[J].中华脑科疾病与康复杂志(电子版), 2019, 9(3): 129-131.
[3]
Chaput N, Flament C, Viaud S, et al. Dendritic cell derived-exosomes: biology and clinical implementations[J]. J Leukoc Biol, 2006, 80(3): 471-478.
[4]
Yates AG, Anthony DC, Ruitenberg MJ, et al. Systemic immune response to traumatic CNS injuries-are extracellular vesicles the missing link?[J]. Front Immunol, 2019, 10: 2723.
[5]
王永强,王烨,王蕾.外泌体在中枢神经系统疾病中的研究进展[J].中华神经医学杂志, 2016, 15(5): 519-523.
[6]
Sun G, Li G, Li D, et al. hucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation[J]. Mater Sci Eng C Mater Biol Appl, 2018, 89: 194-204.
[7]
Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses[J]. Nat Rev Immunol, 2009, 9(8): 581-593.
[8]
Stoorvogel W, Kleijmeer MJ, Geuze HJ, et al. The biogenesis and functions of exosomes[J]. Traffic, 2002, 3(5): 321-330.
[9]
Schuler PJ, Saze Z, Hong CS, et al. Human CD4+ CD39+ regulatory T cells produce adenosine upon co-expression of surface CD73 or contact with CD73+ exosomes or CD73+ cells[J]. Clin Exp Immunol, 2014, 177(2): 531-543.
[10]
Abusamra AJ, Zhong Z, Zheng X, et al. Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis[J]. Blood Cells Mol Dis, 2005, 35(2): 169-173.
[11]
Xu L, Zhang Y, Zhang R, et al. Elevated plasma BDNF levels are correlated with NK cell activation in patients with traumatic spinal cord injury[J]. Int Immunopharmacol, 2019, 74: 105722.
[12]
Laginha I, Kopp MA, Druschel C, et al. Natural killer (NK) cell functionality after human spinal cord injury (SCI): protocol of a prospective, longitudinal study[J]. BMC Neurol, 2016, 16(1): 170.
[13]
Yaguchi M, Tabuse M, Ohta S, et al. Transplantation of dendritic cells promotes functional recovery from spinal cord injury in common marmoset[J]. Neurosci Res, 2009, 65(4): 384-392.
[14]
Yaguchi M, Ohta S, Toyama Y, et al. Functional recovery after spinal cord injury in mice through activation of microglia and dendritic cells after IL-12 administration[J]. J Neurosci Res, 2008, 86(9): 1972-1980.
[15]
Wang K, Chao R, Guo QN, et al. Expressions of some neurotrophins and neurotrophic cytokines at site of spinal cord injury in mice after vaccination with dendritic cells pulsed with homogenate proteins[J]. Neuroimmunomodulation, 2013, 20(2): 87-98.
[16]
Hu W, Song X, Yu H, et al. Released exosomes contribute to the immune modulation of cord blood-derived stem cells[J]. Front Immunol, 2020, 11: 165.
[17]
Xu L, Ye X, Wang Q, et al. T-cell infiltration, contribution and regulation in the central nervous system post-traumatic injury[J]. Cell Prolif, 2021, 54(8): e13092.
[18]
Hu JG, Shi LL, Chen YJ, et al. Differential effects of myelin basic protein-activated Th1 and Th2 cells on the local immune microenvironment of injured spinal cord[J]. Exp Neurol, 2016, 277: 190-201.
[19]
Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation[J]. Nat Rev Drug Discov, 2012, 11(10): 763-776.
[20]
Hu J, Yang Z, Li X, et al. C-C motif chemokine ligand 20 regulates neuroinflammation following spinal cord injury via Th17 cell recruitment[J]. J Neuroinflammation, 2016, 13(1): 162.
[21]
Blauvelt A, Chiricozzi A. The immunologic role of IL-17 in psoriasis and psoriatic arthritis pathogenesis[J]. Clin Rev Allergy Immunol, 2018, 55(3): 379-390.
[22]
Lai P, Chen X, Guo L, et al. A potent immunomodulatory role of exosomes derived from mesenchymal stromal cells in preventing cGVHD[J]. J Hematol Oncol, 2018, 11(1): 135.
[23]
Chen W, Huang Y, Han J, et al. Immunomodulatory effects of mesenchymal stromal cells-derived exosome[J]. Immunol Res, 2016, 64(4): 831-840.
[24]
Liu Z, Zhang H, Xia H, et al. CD8 T cell-derived perforin aggravates secondary spinal cord injury through destroying the blood-spinal cord barrier[J]. Biochem Biophys Res Commun, 2019, 512(2): 367-372.
[25]
Koning JJ, Kooij G, de Vries HE, et al. Mesenchymal stem cells are mobilized from the bone marrow during inflammation[J]. Front Immunol, 2013, 4: 49.
[26]
Lurier EB, Dalton D, Dampier W, et al. Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing[J]. Immunobiology, 2017, 222(7): 847-856.
[27]
Greenhalgh AD, David S, Bennett FC. Immune cell regulation of glia during CNS injury and disease[J]. Nat Rev Neurosci, 2020, 21(3): 139-152.
[28]
Xu S, Lu J, Shao A, et al. Glial cells: role of the immune response in ischemic stroke[J]. Front Immunol, 2020, 11: 294.
[29]
Liu W, Rong Y, Wang J, et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization[J]. J Neuroinflammation, 2020, 17(1): 47.
[30]
Dinet V, Petry KG, Badaut J. Brain-immune interactions and neuroinflammation after traumatic brain injury[J]. Front Neurosci, 2019, 13: 1178.
[31]
Hao M, Ji XR, Chen H, et al. Cell cycle and complement inhibitors may be specific for treatment of spinal cord injury in aged and young mice: transcriptomic analyses[J]. Neural Regen Res, 2018, 13(3): 518-527.
[32]
Peterson SL, Anderson AJ. Complement and spinal cord injury: traditional and non-traditional aspects of complement cascade function in the injured spinal cord microenvironment[J]. Exp Neurol, 2014, 258: 35-47.
[33]
Peterson SL, Nguyen HX, Mendez OA, et al. Complement protein C1q modulates neurite outgrowth in vitro and spinal cord axon regeneration in vivo[J]. J Neurosci, 2015, 35(10): 4332-4349.
[34]
Campbell SJ, Perry VH, Pitossi FJ, et al. Central nervous system injury triggers hepatic CC and CXC chemokine expression that is associated with leukocyte mobilization and recruitment to both the central nervous system and the liver[J]. Am J Pathol, 2005, 166(5): 1487-1497.
[35]
Li X, Liu R, Wang Y, et al. Cholangiocyte-derived exosomal lncRNA H19 promotes macrophage activation and hepatic inflammation under cholestatic conditions[J]. Cells, 2020, 9(1): 190.
[36]
Zhang Y, Liu F, Yuan Y, et al. Inflammasome-derived exosomes activate NF-κB signaling in macrophages[J]. J Proteome Res, 2017, 16(1): 170-178.
[37]
Wang P, Qi X, Xu G, et al. CCL28 promotes locomotor recovery after spinal cord injury via recruiting regulatory T cells[J]. Aging (Albany NY), 2019, 11(18): 7402-7415.
[38]
Kawahara H, Hanayama R. The role of exosomes/extracellular vesicles in neural signal transduction[J]. Biol Pharm Bull, 2018, 41(8): 1119-1125.
[39]
Huang JH, Yin XM, Xu Y, et al. Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats[J]. J Neurotrauma, 2017, 34(24): 3388-3396.
[40]
Smalheiser NR. Exosomal transfer of proteins and RNAs at synapses in the nervous system[J]. Biol Direct, 2007, 2: 35.
[41]
Guo Y, Hong W, Wang X, et al. MicroRNAs in microglia: how do microRNAs affect activation, inflammation, polarization of microglia and mediate the interaction between microglia and Glioma?[J]. Front Mol Neurosci, 2019, 12: 125.
[42]
Pusic KM, Pusic AD, Kraig RP. Environmental enrichment stimulates immune cell secretion of exosomes that promote CNS myelination and may regulate inflammation[J]. Cell Mol Neurobiol, 2016, 36(3): 313-325.
[43]
Xie M, Xiong W, She Z, et al. Immunoregulatory effects of stem cell-derived extracellular vesicles on immune cells[J]. Front Immunol, 2020, 11: 13.
[44]
Lopez-Leal R, Court FA. Schwann cell exosomes mediate neuron-glia communication and enhance axonal pegeneration[J]. Cell Mol Neurobiol, 2016, 36(3): 429-436.
[45]
魏俊吉,陈云飞,薛春玲,等.间充质干细胞来源的Exosome对神经损伤的保护作用.中国医学科学院学报, 2016, 38(1): 33-36.
[46]
Xin H, Li Y, Buller B, et al. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth[J]. Stem Cells, 2012, 30(7): 1556-1564.
[1] 刘政宏, 袁春銮. 乳腺癌患者血清外泌体中长链非编码RNA BC200的表达及临床意义[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 212-216.
[2] 吴杰, 周志强, 符菁, 李喜功, 张钦. 吸入性氢气对大鼠脊髓损伤后自噬及神经功能的影响[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 363-371.
[3] 林琳, 田思萌, 于永华, 徐飞飞, 黄明莉. 干细胞及其外泌体治疗宫腔黏连的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 271-275.
[4] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[5] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[6] 袁丹, 钟潇, 王明松, 贾康. 脊髓损伤神经源性膀胱患者间歇导尿期间尿路感染病原菌分布及影响因素[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 229-236.
[7] 蔡定钦, 孙建国, 陈旭. 外泌体非编码RNAs与肺癌放射治疗的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 655-658.
[8] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[9] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[10] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[11] 仝心语, 谭凯, 白亮亮, 杜锡林. 外泌体在肝细胞癌诊疗中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 384-388.
[12] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[13] 薛文, 刘卓, 贾卫华, 张小义, 刘进, 王爱国, 冯志刚, 杨鑫, 田祺, 段虎斌. 大鼠脊髓损伤后降钙素基因相关肽及神经元钙超载的变化及相关性分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 198-205.
[14] 辛强, 朱文豪, 何川, 李文臣, 陈勃, 王海峰. 神经胶质细胞来源的外泌体miRNAs对创伤性颅脑损伤后神经炎症的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 169-173.
[15] 于同, 矫健航, 姜炜博, 王中汉, 王洋, 伍旭辉, 吴敏飞. 体位复位与椎板切除减压内固定术治疗胸腰段爆裂性骨折的对比性研究[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 331-339.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?