[1] |
魏梁锋.颈椎后路椎板切除脊髓内减压术治疗急性创伤性颈髓损伤[J].中华神经创伤外科电子杂志, 2016, 2(3): 191-192.
|
[2] |
赵继宗.脊髓损伤再生修复及临床转化研究[J].中华脑科疾病与康复杂志(电子版), 2019, 9(3): 129-131.
|
[3] |
Chaput N, Flament C, Viaud S, et al. Dendritic cell derived-exosomes: biology and clinical implementations[J]. J Leukoc Biol, 2006, 80(3): 471-478.
|
[4] |
Yates AG, Anthony DC, Ruitenberg MJ, et al. Systemic immune response to traumatic CNS injuries-are extracellular vesicles the missing link?[J]. Front Immunol, 2019, 10: 2723.
|
[5] |
王永强,王烨,王蕾.外泌体在中枢神经系统疾病中的研究进展[J].中华神经医学杂志, 2016, 15(5): 519-523.
|
[6] |
Sun G, Li G, Li D, et al. hucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation[J]. Mater Sci Eng C Mater Biol Appl, 2018, 89: 194-204.
|
[7] |
Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses[J]. Nat Rev Immunol, 2009, 9(8): 581-593.
|
[8] |
Stoorvogel W, Kleijmeer MJ, Geuze HJ, et al. The biogenesis and functions of exosomes[J]. Traffic, 2002, 3(5): 321-330.
|
[9] |
Schuler PJ, Saze Z, Hong CS, et al. Human CD4+ CD39+ regulatory T cells produce adenosine upon co-expression of surface CD73 or contact with CD73+ exosomes or CD73+ cells[J]. Clin Exp Immunol, 2014, 177(2): 531-543.
|
[10] |
Abusamra AJ, Zhong Z, Zheng X, et al. Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis[J]. Blood Cells Mol Dis, 2005, 35(2): 169-173.
|
[11] |
Xu L, Zhang Y, Zhang R, et al. Elevated plasma BDNF levels are correlated with NK cell activation in patients with traumatic spinal cord injury[J]. Int Immunopharmacol, 2019, 74: 105722.
|
[12] |
Laginha I, Kopp MA, Druschel C, et al. Natural killer (NK) cell functionality after human spinal cord injury (SCI): protocol of a prospective, longitudinal study[J]. BMC Neurol, 2016, 16(1): 170.
|
[13] |
Yaguchi M, Tabuse M, Ohta S, et al. Transplantation of dendritic cells promotes functional recovery from spinal cord injury in common marmoset[J]. Neurosci Res, 2009, 65(4): 384-392.
|
[14] |
Yaguchi M, Ohta S, Toyama Y, et al. Functional recovery after spinal cord injury in mice through activation of microglia and dendritic cells after IL-12 administration[J]. J Neurosci Res, 2008, 86(9): 1972-1980.
|
[15] |
Wang K, Chao R, Guo QN, et al. Expressions of some neurotrophins and neurotrophic cytokines at site of spinal cord injury in mice after vaccination with dendritic cells pulsed with homogenate proteins[J]. Neuroimmunomodulation, 2013, 20(2): 87-98.
|
[16] |
Hu W, Song X, Yu H, et al. Released exosomes contribute to the immune modulation of cord blood-derived stem cells[J]. Front Immunol, 2020, 11: 165.
|
[17] |
Xu L, Ye X, Wang Q, et al. T-cell infiltration, contribution and regulation in the central nervous system post-traumatic injury[J]. Cell Prolif, 2021, 54(8): e13092.
|
[18] |
Hu JG, Shi LL, Chen YJ, et al. Differential effects of myelin basic protein-activated Th1 and Th2 cells on the local immune microenvironment of injured spinal cord[J]. Exp Neurol, 2016, 277: 190-201.
|
[19] |
Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation[J]. Nat Rev Drug Discov, 2012, 11(10): 763-776.
|
[20] |
Hu J, Yang Z, Li X, et al. C-C motif chemokine ligand 20 regulates neuroinflammation following spinal cord injury via Th17 cell recruitment[J]. J Neuroinflammation, 2016, 13(1): 162.
|
[21] |
Blauvelt A, Chiricozzi A. The immunologic role of IL-17 in psoriasis and psoriatic arthritis pathogenesis[J]. Clin Rev Allergy Immunol, 2018, 55(3): 379-390.
|
[22] |
Lai P, Chen X, Guo L, et al. A potent immunomodulatory role of exosomes derived from mesenchymal stromal cells in preventing cGVHD[J]. J Hematol Oncol, 2018, 11(1): 135.
|
[23] |
Chen W, Huang Y, Han J, et al. Immunomodulatory effects of mesenchymal stromal cells-derived exosome[J]. Immunol Res, 2016, 64(4): 831-840.
|
[24] |
Liu Z, Zhang H, Xia H, et al. CD8 T cell-derived perforin aggravates secondary spinal cord injury through destroying the blood-spinal cord barrier[J]. Biochem Biophys Res Commun, 2019, 512(2): 367-372.
|
[25] |
Koning JJ, Kooij G, de Vries HE, et al. Mesenchymal stem cells are mobilized from the bone marrow during inflammation[J]. Front Immunol, 2013, 4: 49.
|
[26] |
Lurier EB, Dalton D, Dampier W, et al. Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing[J]. Immunobiology, 2017, 222(7): 847-856.
|
[27] |
Greenhalgh AD, David S, Bennett FC. Immune cell regulation of glia during CNS injury and disease[J]. Nat Rev Neurosci, 2020, 21(3): 139-152.
|
[28] |
Xu S, Lu J, Shao A, et al. Glial cells: role of the immune response in ischemic stroke[J]. Front Immunol, 2020, 11: 294.
|
[29] |
Liu W, Rong Y, Wang J, et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization[J]. J Neuroinflammation, 2020, 17(1): 47.
|
[30] |
Dinet V, Petry KG, Badaut J. Brain-immune interactions and neuroinflammation after traumatic brain injury[J]. Front Neurosci, 2019, 13: 1178.
|
[31] |
Hao M, Ji XR, Chen H, et al. Cell cycle and complement inhibitors may be specific for treatment of spinal cord injury in aged and young mice: transcriptomic analyses[J]. Neural Regen Res, 2018, 13(3): 518-527.
|
[32] |
Peterson SL, Anderson AJ. Complement and spinal cord injury: traditional and non-traditional aspects of complement cascade function in the injured spinal cord microenvironment[J]. Exp Neurol, 2014, 258: 35-47.
|
[33] |
Peterson SL, Nguyen HX, Mendez OA, et al. Complement protein C1q modulates neurite outgrowth in vitro and spinal cord axon regeneration in vivo[J]. J Neurosci, 2015, 35(10): 4332-4349.
|
[34] |
Campbell SJ, Perry VH, Pitossi FJ, et al. Central nervous system injury triggers hepatic CC and CXC chemokine expression that is associated with leukocyte mobilization and recruitment to both the central nervous system and the liver[J]. Am J Pathol, 2005, 166(5): 1487-1497.
|
[35] |
Li X, Liu R, Wang Y, et al. Cholangiocyte-derived exosomal lncRNA H19 promotes macrophage activation and hepatic inflammation under cholestatic conditions[J]. Cells, 2020, 9(1): 190.
|
[36] |
Zhang Y, Liu F, Yuan Y, et al. Inflammasome-derived exosomes activate NF-κB signaling in macrophages[J]. J Proteome Res, 2017, 16(1): 170-178.
|
[37] |
Wang P, Qi X, Xu G, et al. CCL28 promotes locomotor recovery after spinal cord injury via recruiting regulatory T cells[J]. Aging (Albany NY), 2019, 11(18): 7402-7415.
|
[38] |
Kawahara H, Hanayama R. The role of exosomes/extracellular vesicles in neural signal transduction[J]. Biol Pharm Bull, 2018, 41(8): 1119-1125.
|
[39] |
Huang JH, Yin XM, Xu Y, et al. Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats[J]. J Neurotrauma, 2017, 34(24): 3388-3396.
|
[40] |
Smalheiser NR. Exosomal transfer of proteins and RNAs at synapses in the nervous system[J]. Biol Direct, 2007, 2: 35.
|
[41] |
Guo Y, Hong W, Wang X, et al. MicroRNAs in microglia: how do microRNAs affect activation, inflammation, polarization of microglia and mediate the interaction between microglia and Glioma?[J]. Front Mol Neurosci, 2019, 12: 125.
|
[42] |
Pusic KM, Pusic AD, Kraig RP. Environmental enrichment stimulates immune cell secretion of exosomes that promote CNS myelination and may regulate inflammation[J]. Cell Mol Neurobiol, 2016, 36(3): 313-325.
|
[43] |
Xie M, Xiong W, She Z, et al. Immunoregulatory effects of stem cell-derived extracellular vesicles on immune cells[J]. Front Immunol, 2020, 11: 13.
|
[44] |
Lopez-Leal R, Court FA. Schwann cell exosomes mediate neuron-glia communication and enhance axonal pegeneration[J]. Cell Mol Neurobiol, 2016, 36(3): 429-436.
|
[45] |
魏俊吉,陈云飞,薛春玲,等.间充质干细胞来源的Exosome对神经损伤的保护作用.中国医学科学院学报, 2016, 38(1): 33-36.
|
[46] |
Xin H, Li Y, Buller B, et al. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth[J]. Stem Cells, 2012, 30(7): 1556-1564.
|