切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2024, Vol. 10 ›› Issue (05) : 310 -314. doi: 10.3877/cma.j.issn.2095-9141.2024.05.009

综述

海藻酸盐水凝胶支架在颅骨缺损修复中的应用进展
孙明策1, 韩世焕2,()   
  1. 1.133000 吉林延边,延边大学医学院
    2.133000 吉林延边,延边大学附属医院骨科
  • 收稿日期:2024-01-24 出版日期:2024-10-15
  • 通信作者: 韩世焕
  • 基金资助:
    吉林省教育厅科学技术研究项目(JJKH20220553 KJ)延边大学应用基础项目(YDKJ202218)

Progress in the application of alginate saline gel scaffolds in the repair of skull defects

Mingce Sun1, Shihuan Han2,()   

  1. 1.School of Medicine,Yanbian University,Yanbian 133000,China
    2.Department of Orthopedic Surgey,Yanbian University Hospitol,Yanbian 133000,China
  • Received:2024-01-24 Published:2024-10-15
  • Corresponding author: Shihuan Han
引用本文:

孙明策, 韩世焕. 海藻酸盐水凝胶支架在颅骨缺损修复中的应用进展[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 310-314.

Mingce Sun, Shihuan Han. Progress in the application of alginate saline gel scaffolds in the repair of skull defects[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2024, 10(05): 310-314.

海藻酸盐水凝胶具有良好的组织相容性和生物降解性,作为三维培养支架在骨组织修复中被广泛研究和应用,且取得了显著进展。海藻酸盐水凝胶因其自身优越的力学性能和生物活性,使其在颅骨缺损区域起到持续释放的作用,从而促进骨细胞的再生、增殖和分化,加速骨组织修复过程,提高其在骨组织修复中的疗效。本文围绕海藻酸盐水凝胶搭配3D支架在颅骨缺损修复中的应用展开综述,旨在为其应用于临床提供参考。

Alginate gel has good histocompatibility and biodegradability, and has been widely studied and applied in bone tissue repair as a three-dimensional culture scaffold,and remarkable progress has been made. Because of its superior mechanical properties and biological activities, alginate gel can play a continuous role in the skull defect area, so as to promote the regeneration, proliferation and differentiation of bone cells, accelerate the process of bone tissue repair, and improve its therapeutic effect in bone tissue repair.This review focuses on the application of alginate saline gel combined with 3D stent in the repair of skull defects in recent years, in order to provide a reference for its clinical application.

[1]
Capizzi A, Woo J, Verduzco-Gutierrez M. Traumatic brain injury:an overview of epidemiology, pathophysiology, and medical management[J].Med Clin North Am,2020,104(2):213-238.DOI:10.1016/j.mcna.2019.11.001.
[2]
Bharathi R, Ganesh SS, Harini G, et al. Chitosan-based scaffolds as drug delivery systems in bone tissue engineering[J]. Int J Biol Macromol, 2022, 222(Pt A): 132-153. DOI: 10.1016/j.ijbiomac.2022.09.058.
[3]
Lee EJ, Jain M, Alimperti S. Bone microvasculature: stimulus for tissue function and regeneration[J]. Tissue Eng Part B Rev, 2021,27(4):313-329.DOI:10.1089/ten.TEB.2020.0154.
[4]
Ahmad Raus R, Wan Nawawi WMF, Nasaruddin RR. Alginate and alginate composites for biomedical applications[J]. Asian J Pharm Sci,2021,16(3):280-306.DOI:10.1016/j.ajps.2020.10.001.
[5]
Pishavar E, Luo H, Naserifar M, et al. Advanced hydrogels as exosome delivery systems for osteogenic differentiation of MSCs:application in bone regeneration[J]. Int J Mol Sci, 2021, 22(12):6203.DOI:10.3390/ijms22126203.
[6]
Huang X, Chen Q, Luo W, et al. Satb2: a versatile transcriptional regulator of craniofacial and skeleton development, neurogenesis and tumorigenesis, and its applications in regenerative medicine[J]. Genes Dis, 2022, 9(1): 95-107. DOI: 10.1016/j.gendis.2020.10.003.
[7]
Wu GJ, Chen JT, Lin PI, et al. Inhibition of the estrogen receptor alpha signaling delays bone regeneration and alters osteoblast maturation, energy metabolism, and angiogenesis[J]. Life Sci,2020,258:118195.DOI:10.1016/j.lfs.2020.118195.
[8]
梁松林,荔志云,孙建军,等.颅骨修补术后并发症及其影响因素分析[J]. 中华神经创伤外科电子杂志, 2021, 7(6): 350-354.DOI:10.3877/cma.j.issn.2095-9141.2021.06.006.Liang SL, Li ZY, Sun JJ, et al. Postoperative complications and influencing factors after cranioplasty[J]. Chin J Neurotrauma Surg(Electronic Edition), 2021, 7(6): 350-354. DOI: 10.3877/cma.j.issn.2095-9141.2021.06.006.
[9]
Perić Kačarević Ž, Rider P, Alkildani S, et al. An introduction to bone tissue engineering[J]. Int J Artif Organs, 2020, 43(2): 69-86.DOI:10.1177/0391398819876286.
[10]
Meza - Mauricio J, Furquim CP, Dos Reis LD, et al. How efficacious is the combination of substitute bone graft with autogenous bone graft in comparison with substitute bone graft alone in the horizontal bone gain? A systematic review and metaanalysis[J]. J Clin Exp Dent, 2022, 14(8): e678-e688. DOI: 10.4317/jced.59087.
[11]
Ying C, Wang R, Wang Z, et al. BMSC-exosomes carry mutant HIF-1α for improving angiogenesis and osteogenesis in criticalsized calvarial defects[J]. Front Bioeng Biotechnol, 2020, 8:565561.DOI:10.3389/fbioe.2020.565561.
[12]
Serra-Aguado CI, Llorens-Gámez M, Vercet-Llopis P, et al.Engineering three-dimensional-printed bioactive polylactic acid alginate composite scaffolds with antibacterial and in vivo osteoinductive capacity[J]. ACS Appl Mater Interfaces, 2022, 14(48):53593-53602.DOI:10.1021/acsami.2c19300.
[13]
Pan PP,Chen X,Xing HR,et al.A fast on-demand preparation of injectable self - healing nanocomposite hydrogels for efficient osteoinduction[J]. Chinese Chemical Letters, 2021, 32(7): 2159-2163.
[14]
Beare JE,Fleissig Y,Kelm NQ,et al.Mimicking clinical rejection patterns in a rat osteomyocutaneous flap model of vascularized composite allotransplantation[J]. J Surg Res, 2024, 295: 28-40.DOI:10.1016/j.jss.2023.08.057.
[15]
Galaburda M, Szewczuk-Karpisz K, Goncharuk O, et al. The influence of sodium alginate on the structural and adsorption properties of resorcinol - formaldehyde resins and their porous carbon derivatives[J]. Chemphyschem, 2024, 25(4): e202300796.DOI:10.1002/cphc.202300796.
[16]
Pan T, Song W, Xin H, et al. MicroRNA-activated hydrogel scaffold generated by 3D printing accelerates bone regeneration[J].Bioact Mater,2021,10:1-14.DOI:10.1016/j.bioactmat.2021.08.034.
[17]
Zhu Y,Deng S,Ma Z,et al.Macrophages activated by akermanite/alginate composite hydrogel stimulate migration of bone marrowderived mesenchymal stem cells[J]. Biomed Mater, 2021, 16(4): .DOI:10.1088/1748-605X/abe80a.
[18]
Li S, Yuan Q, Yang M, et al. Enhanced cartilage regeneration by icariin and mesenchymal stem cell-derived extracellular vesicles combined in alginate-hyaluronic acid hydrogel[J]. Nanomedicine,2024,55:102723.DOI:10.1016/j.nano.2023.102723.
[19]
Bari E, Scocozza F, Perteghella S, et al. Three - dimensional bioprinted controlled release scaffold containing mesenchymal stem/stromal lyosecretome for bone regeneration:sterile manufacturing and in vitro biological efficacy[J]. Biomedicines, 2022, 10(5):1063.DOI:10.3390/biomedicines10051063.
[20]
He X, Wang R, Wang L, et al. Electrospun photocrosslinkable hydrogel fibrous membrane with metal ion trapping capability as an artificial periosteum to promote bone regeneration[J]. 2024,271: 111147.1-111147.18. DOI: 10.1016/j.compositesb.2023.111147.
[21]
Debta S, Bhutia SZ, Satapathy DK, et al. Intrinsic - water desorption induced thermomechanical response of hydrogels[J].Soft Matter,2022,18(43):8285-8294.DOI:10.1039/d2sm01054b.
[22]
Moser AC, Fritz J, Kesselring A, et al. Biomechanical testing of virtual meniscus implants made from a bi-phasic silk fibroinbased hydrogel and polyurethane via finite element analysis[J]. J Mech Behav Biomed Mater, 2025, 162: 106830. DOI: 10.1016/j.jmbbm.2024.106830.
[23]
Li G, Chen J, Yan Z, et al. Physical crosslinked hydrogel-derived smart windows: anti - freezing and fast thermal responsive performance[J]. Mater Horiz, 2023, 10(6): 2004-2012. DOI: 10.1039/d3mh00057e.
[24]
Sikdar P, Uddin MM, Dip TM, et al. Recent advances in the synthesis of smart hydrogels[J]. Materials Advances, 2021, 2(14):4532-4573.
[25]
Muñana-González S, Veloso-Fernández A, Ruiz-Rubio L, et al.Covalent cross-linking as a strategy to prepare water-dispersible chitosan nanogels[J]. Polymers (Basel), 2023, 15(2): 434. DOI:10.3390/polym15020434.
[26]
Johnson CT, Wroe JA, Agarwal R, et al. Hydrogel delivery of lysostaphin eliminates orthopedic implant infection by staphylococcus aureus and supports fracture healing[J]. Proc Natl Acad Sci USA,2018,115(22):E4960-E4969.DOI:10.1073/pnas.1801013115.
[27]
Gómez-Mascaraque LG, Martínez-Sanz M, Martínez-López R, et al. Characterization and gelling properties of a bioactive extract from ascophyllum nodosum obtained using a chemical - free approach[J]. Curr Res Food Sci, 2021, 4: 354-364. DOI: 10.1016/j.crfs.2021.05.005.
[28]
刘磊.水凝胶磷酸化微环境的构建及调控细胞成骨分化研究[D].广州:华南理工大学,2020.Liu L. Study on construction of hydrogel phosphorylated microenvironment and its regulation on osteogenic differentiation[D].Guangzhou:South China University of Technology,2020.
[29]
Wu Y, Tang Z, Ma S, et al. The promising application of hydrogel microneedles in medical application[J].J Pharm Pharmacol,2023,75(8):1011-1020.DOI:10.1093/jpp/rgad058.
[30]
La Manna S, Florio D, Di Natale C, et al. Modulation of hydrogel networks by metal ions[J]. J Pept Sci, 2023, 29(8): e3474. DOI:10.1002/psc.3474.
[31]
Arthur A, Gronthos S. Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue[J]. Int J Mol Sci,2020,21(24):9759.DOI:10.3390/ijms21249759.
[32]
Liu G, Wei X, Li J, et al. Hydrogel composition and mechanical stiffness of 3D bioprinted cell-loaded scaffolds promote cartilage regeneration[J]. Frontiers in Materials, 2024, 11: 1-14. DOI: 10.3389/fmats.2024.1501505.
[33]
Liu C, Dai T, Wu X, et al. 3D bioprinting of cell - laden nanoattapulgite/gelatin methacrylate composite hydrogel scaffolds for bone tissue repair[J].J Mater Sci Technol,2023,135:111-125.
[34]
Mohaghegh S, Hosseini SF, Rad MR, et al. 3D printed composite scaffolds in bone tissue engineering: a systematic review[J]. Curr Stem Cell Res Ther,2022,17(7):648-709.DOI:10.2174/1574888 x16666210810111754.
[35]
Ohta S, Hiramoto S, Amano Y, et al. Production of cisplatinincorporating hyaluronan nanogels via chelating ligand - metal coordination[J]. Bioconjug Chem, 2016, 27(3): 504-508. DOI: 10.1021/acs.bioconjchem.5b00674.
[36]
Xu Y, Xu Y, Bi B, et al. A moldable thermosensitive hydroxypropyl chitin hydrogel for 3D cartilage regeneration in vitro and in vivo[J].Acta Biomater,2020,108:87-96.DOI:10.1016/j.actbio.2020.03.039.
[37]
Antich C, de Vicente J, Jiménez G, et al. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs[J].Acta Biomater, 2020, 106: 114-123. DOI: 10.1016/j.actbio.2020.01.046.
[38]
Zhou B, Jiang X, Zhou X, et al. Gelma-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances[J]. Biomater Res, 2023, 27(1): 86.DOI:10.1186/s40824-023-00422-6.
[39]
Ghiorghita CA, Humelnicu D, Dinu MV, et al. Polyelectrolyte complex composite cryogels with self-antibacterial properties and wide window for simultaneous removal of multiple contaminants[J]. Chem Eng J, 2023, 459: 141562. DOI: 10.1016/j.cej.2023.141562.
[40]
Yu T, Hu Y, He W, et al. An injectable and self-healing hydrogel with dual physical crosslinking for in - situ bone formation[J].Mater Today Bio, 2023, 19: 100558. DOI: 10.1016/j.mtbio.2023.100558.
[41]
范谊.搭载骨髓间充质干细胞的可注射水凝胶促进临界性骨缺损修复的研究[D].长春:吉林大学,2023.Fan Y. The study of injectable hydrogel loaded with bone marrow mesenchymal stem cells promoting the repair of critical bone defect[D].Changchun:Jilin University,2023.
[42]
Du J, Fan D, Yang X, et al. Facile fabrication of artemisia sphaerocephala krasch gum hydrogels by radiation induced crosslinking polymerization and enhanced ultrahigh adsorption for methylene blue[J]. Int J Biol Macromol, 2023, 249: 126074. DOI:10.1016/j.ijbiomac.2023.126074.
[43]
靳美琪.诱导骨形成的仿生性骨修复复合支架的构建及效能评估[D].沈阳:中国医科大学,2023.Jin MQ. Construction and efficacy assessment of a bionic bone repair composite scaffold for inducing bone formation[D]. Shenyang:China Medical University,2023.
[44]
Liu C, Qin W, Wang Y, et al. 3D printed gelatin/sodium alginate hydrogel scaffolds doped with nano-attapulgite for bone tissue repair[J]. Int J Nanomedicine, 2021, 16: 8417-8432. DOI: 10.2147/ijn.S339500.
[45]
Qiu Z, Zhu H ,Wang Y, et al, et al. Functionalized alginate-based bioinks for microscale electrohydrodynamic bioprinting of living tissue constructs with improved cellular spreading and alignment[J]. Bio-des Manuf, 2023, 6(2): 136-149. DOI: 10. 1007/s42242-022-00225-z.
[1] 赵倩颖, 郄明蓉. 上皮性卵巢癌的病理及分子诊断[J/OL]. 中华妇幼临床医学杂志(电子版), 2019, 15(06): 605-611.
[2] 何萌, 陈娟, 伍金林. 间充质干细胞通过调控巨噬细胞极化实现免疫应答的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2019, 15(05): 492-496.
[3] 李毅, 王洪瑾, 冯艳萍, 张科伟, 吴晓伟. 京尼平-壳聚糖牦牛跟腱胶原蛋白支架的构建及其细胞毒性和组织相容性的研究[J/OL]. 中华损伤与修复杂志(电子版), 2019, 14(06): 410-415.
[4] 刘全国, 龚文斌, 李俊生. 重组蜘蛛丝蛋白在腹股沟疝修补术中的应用前景[J/OL]. 中华疝和腹壁外科杂志(电子版), 2018, 12(04): 252-254.
[5] 郭靖, 罗奇志, 田芳, 郭旭丽, 罗伟光, 邹义洲. 免疫磁珠分离淋巴细胞在流式交叉配型试验中的应用及研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2017, 07(03): 146-151.
[6] 魏胜超, 邓堂, 廖勇, 钟士杰, 史键山, 金桂云, 王剑锋. 海藻酸盐微球栓塞剂的制备及应用进展[J/OL]. 中华介入放射学电子杂志, 2022, 10(02): 202-208.
阅读次数
全文


摘要