切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2021, Vol. 07 ›› Issue (02) : 121 -124. doi: 10.3877/cma.j.issn.2095-9141.2021.02.013

所属专题: 文献

综述

急性缺血性脑卒中氧化应激机制的研究进展
都一鸣1, 陈鑫1, 赵世光1,()   
  1. 1. 150001 哈尔滨,哈尔滨医科大学附属第一医院神经外科
  • 收稿日期:2020-02-18 出版日期:2021-04-15
  • 通信作者: 赵世光
  • 基金资助:
    国家科技支撑计划项目(2013BAH06F04)

Progress of mechanism of oxidative stress in acute ischemic stroke

Yiming Du1, Xin Chen1, Shiguang Zhao1,()   

  1. 1. Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
  • Received:2020-02-18 Published:2021-04-15
  • Corresponding author: Shiguang Zhao
引用本文:

都一鸣, 陈鑫, 赵世光. 急性缺血性脑卒中氧化应激机制的研究进展[J]. 中华神经创伤外科电子杂志, 2021, 07(02): 121-124.

Yiming Du, Xin Chen, Shiguang Zhao. Progress of mechanism of oxidative stress in acute ischemic stroke[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2021, 07(02): 121-124.

脑卒中是我国最主要的疾病死因,而氧化应激贯穿疾病始终。抗氧化应激是重要的防治损伤并促进缺血性脑卒中后神经功能恢复的治疗策略,但其临床应用效果仍不理想。本文就近年急性缺血性脑卒中氧化应激相关机制的研究进展作一综述,以期寻找更好的基础临床转化思路,从而推进对急性缺血性卒中治疗的研究。

Stroke is the leading cause of death in China, while oxidative stress persists throughout the disease. Antioxidative is an important treatment method to prevent nerve injury and promote the recovery of neurological function after ischemic stroke. However, its clinical application effect is still not satisfactory. This article reviews the research progress of oxidative stress related mechanisms in ischemic stroke in recent years, which support finding better transformation ideas, and at last promote the study of treatment of acute ischemic stroke.

[1]
Maciejczyk M, Żebrowska E, Chabowski A. Insulin resistance and oxidative stress in the brain: what’s new?[J]. Int J Mol Sci, 2019, 20(4): 874.
[2]
Zhang K, Tu M, Gao W, et al. Hollow prussian blue nanozymes drive neuroprotection against ischemic stroke via attenuating oxidative stress, counteracting inflammation, and suppressing cell apoptosis[J]. Nano Lett, 2019, 19(5): 2812-2823.
[3]
Brand MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling[J]. Free Radic Biol Med, 2016, 100: 14-31.
[4]
Hanafy KA, Gomes JA, Selim M. Rationale and current evidence for testing iron chelators for treating stroke[J]. Curr Cardiol Rep, 2019, 21(4): 20.
[5]
Burmistrova O, Olias-Arjona A, Lapresa R, et al. Targeting PFKFB3 alleviates cerebral ischemia-reperfusion injury in mice[J]. Sci Rep, 2019, 9(1): 11670.
[6]
Amantea D, Bagetta G. Excitatory and inhibitory amino acid neurotransmitters in stroke: from neurotoxicity to ischemic tolerance[J]. Curr Opin Pharmacol, 2017, 35: 111-119.
[7]
Shi M, Cao L, Cao X, et al. DR-region of Na+/K+ ATPase is a target to treat excitotoxicity and stroke[J]. Cell Death Dis, 2018, 10(1): 6.
[8]
Chuang DY, Simonyi A, Kotzbauer PT, et al. Cytosolic phospholipase A2 plays a crucial role in ROS/NO signaling during microglial activation through the lipoxygenase pathway[J]. J Neuroinflammation, 2015, 12: 199.
[9]
Chouchani ET, Pell VR, Gaude E, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS[J]. Nature, 2014, 515(7527): 431-435.
[10]
Velimirović M, Jevtić Dožudić G, Selaković V, et al. Effects of vitamin D3 on the NADPH oxidase and matrix metalloproteinase 9 in an animal model of global cerebral ischemia[J]. Oxid Med Cell Longev, 2018, 2018: 3273654.
[11]
Chuang DY, Cui J, Simonyi A, et al. Dietary Sutherlandia and elderberry mitigate cerebral ischemia-induced neuronal damage and attenuate p47phox and phospho-ERK1/2 expression in microglial cells[J]. ASN Neuro, 2014, 6(6): 1759091414554946.
[12]
Liu Y, Feng S, Subedi K, et al. Attenuation of ischemic stroke-caused brain injury by a monoamine oxidase inhibitor involves improved proteostasis and reduced neuroinflammation[J]. Mol Neurobiol, 2020, 57(2): 937-948.
[13]
Kawai T, Okochi Y, Ozaki T, et al. Unconventional role of voltage-gated proton channels (VSOP/Hv1) in regulation of microglial ROS production[J]. J Neurochem, 2017, 142(5): 686-699.
[14]
Tang Z, Gan Y, Liu Q, et al. CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke[J]. J Neuroinflammation, 2014, 11: 26.
[15]
Nissanka N, Moraes CT. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease[J]. FEBS Lett, 2018, 592(5): 728-742.
[16]
Jadavji NM, Farr TD, Lips J, et al. Elevated levels of plasma homocysteine, deficiencies in dietary folic acid and uracil-DNA glycosylase impair learning in a mouse model of vascular cognitive impairment[J]. Behav Brain Res, 2015, 283: 215-226.
[17]
Morris-Blanco KC, Kim T, Lopez MS, et al. Induction of DNA hydroxymethylation protects the brain after stroke[J]. Stroke, 2019, 50(9): 2513-2521.
[18]
Singh M, Kapoor A, Bhatnagar A. Oxidative and reductive metabolism of lipid-peroxidation derived carbonyls[J]. Chem Biol Interact, 2015, 234: 261-273.
[19]
Kotani S, Izawa S, Komai N, et al. Mitochondria-localized phospholipase A 2, AoPlaA, in aspergillus oryzae displays phosphatidylethanolamine-specific activity and is involved in the maintenance of mitochondrial phospholipid composition[J]. Fungal Genet Biol, 2016, 96: 1-11.
[20]
Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285.
[21]
Matsui R, Honda R, Kanome M, et al. Designing antioxidant peptides based on the antioxidant properties of the amino acid side-chains[J]. Food Chem, 2018, 245: 750-755.
[22]
Xu B, Qin Y, Li D, et al. Inhibition of PDE4 protects neurons against oxygen-glucose deprivation-induced endoplasmic reticulum stress through activation of the Nrf-2/HO-1 pathway[J]. Redox Biol, 2020, 28: 101342.
[23]
Xing J, Xu H, Liu C, et al. Melatonin ameliorates endoplasmic reticulum stress in N2a neuroblastoma cell hypoxia-reoxygenation injury by activating the AMPK-Pak2 pathway[J]. Cell Stress Chaperones, 2019, 24(3): 621-633.
[24]
Grochowski C, Litak J, Kamieniak P, et al. Oxidative stress in cerebral small vessel disease. Role of reactive species[J]. Free Radic Res, 2018, 52(1): 1-13.
[25]
Zhao M, Zhu P, Fujino M, et al. Oxidative stress in hypoxic-ischemic encephalopathy: molecular mechanisms and therapeutic strategies[J]. Int J Mol Sci, 2016, 17(12): 2078.
[26]
Jiang S, Deng C, Lv J, et al. Nrf2 weaves an elaborate network of neuroprotection against stroke[J]. Mol Neurobiol, 2017, 54: 1440-1455.
[27]
Tu LF, Cao LF, Zhang YH, et al. Sirt3-dependent deacetylation of COX-1 counteracts oxidative stress-induced cell apoptosis[J]. FASEB J, 2019, 33(12): 14118-14128.
[28]
Wei Y, Wang R, Teng J. Inhibition of calcium/calmodulin-dependent protein kinase IIalpha suppresses oxidative stress in cerebral ischemic rats through targeting glucose 6-phosphate dehydrogenase[J]. Neurochem Res, 2019, 44(7): 1613-1620.
[29]
Ye Y, Jin T, Zhang X, et al. Meisoindigo protects against focal cerebral ischemia-reperfusion injury by inhibiting NLRP3 inflammasome activation and regulating microglia/macrophage polarization via TLR4/NF-κB signaling pathway[J]. Front Cell Neurosci, 2019, 13: 553.
[30]
Bhat SA, Sood A, Shukla R, et al. AT2R Activation prevents microglia pro-inflammatory activation in a NOX-dependent manner: inhibition of PKC activation and p47phox phosphorylation by PP2A[J]. Mol Neurobiol, 2019, 56(4): 3005-3023.
[31]
Gonçalves LV, Herlinger AL, Ferreira TAA, et al. Environmental enrichment cognitive neuroprotection in an experimental model of cerebral ischemia: biochemical and molecular aspects[J]. Behav Brain Res, 2018, 348: 171-183.
[32]
Singhal G, Baune BT. Microglia: an interface between the loss of neuroplasticity and depression[J]. Front Cell Neurosci, 2017, 11: 270.
[33]
Jayaraj RL, Azimullah S, Beiram R, et al. Neuroinflammation: friend and foe for ischemic stroke[J]. J Neuroinflammation, 2019, 169(1): 142.
[34]
Liu Q, Zhang Y. PRDX1 enhances cerebral ischemia-reperfusion injury through activation of TLR4-regulated inflammation and apoptosis[J]. Biochem Biophys Res Commun, 2019, 519(3): 453-461.
[35]
Yang Q, Huang Q, Hu Z, et al. Potential neuroprotective treatment of stroke: targeting excitotoxicity, oxidative stress, and inflammation[J]. Front Neurosci, 2019, 13: 1036.
[36]
Yan W, Sun W, Fan J. et al. Sirt1-ROS-TRAF6 signaling-induced pyroptosis contributes to early injury in ischemic mice[J]. Neurosci Bull, 2020, 36(8): 845-859.
[37]
An P, Xie J, Qiu S, et al. Hispidulin exhibits neuroprotective activities against cerebral ischemia reperfusion injury through suppressing NLRP3-mediated pyroptosis[J]. Life Sci, 2019, 232: 116599.
[38]
Wang L, Negro R, Wu H. TRPM2, linking oxidative stress and Ca2+ permeation to NLRP3 inflammasome activation[J]. Curr Opin Immunol, 2020, 62: 131-135.
[39]
McKenzie BA, Mamik MK, Saito LB, et al. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis[J]. Proc Natl Acad Sci USA, 2018, 115(6): E6065-E6074.
[40]
Xia P, Pan Y, Zhang F, et al. Pioglitazone confers neuroprotection against ischemia-induced pyroptosis due to its inhibitory effects on HMGB-1/RAGE and Rac1/ROS pathway by activating PPAR-γ[J]. Cell Physiol Biochem, 2018, 45(6): 2351-2368.
[41]
Wang H, Chen H, Jin J, et al. Inhibition of the NLRP3 inflammasome reduces brain edema and regulates the distribution of aquaporin-4 after cerebral ischaemia-reperfusion[J]. Life Sci, 2020, 251: 117638.
[42]
Scherz-Shouval R, Shvets E, Elazar Z. Oxidation as a post-translational modification that regulates autophagy[J]. Autophagy, 2007, 3(4): 371-373.
[43]
Nabavi SF, Sureda A, Sanches-Silva A, et al. Novel therapeutic strategies for stroke: the role of autophagy[J]. Crit Rev Clin Lab Sci, 2019, 56: 182-199.
[1] 刘欢颜, 华扬, 贾凌云, 赵新宇, 刘蓓蓓. 颈内动脉闭塞病变管腔结构和血流动力学特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 809-815.
[2] 刘骏, 朱霁, 殷骏. 右美托咪定对腹股沟疝手术麻醉效果及安全性的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 570-573.
[3] 孙文琦, 吴欣荣, 王运荣, 赵贝, 窦晓坛, 李雯, 邹晓平, 王雷, 陈敏. 结直肠上皮细胞ROS及FH检测对结直肠癌筛查的应用价值[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 326-330.
[4] 尚慧娟, 袁晓冬. 机械取栓术后应用依达拉奉右崁醇对急性缺血性脑卒中预后的改善[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 295-301.
[5] 王静, 何彬. 经颅彩色多普勒超声联合血sCD40L、Fib、PAF对短暂性脑缺血发作后脑梗死的预测效果[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 222-227.
[6] 刘宏达, 邵祥忠, 李林, 许小伟. 海安地区动脉粥样硬化性脑梗死患者CYP2C19基因多态性及与氯吡格雷抵抗的关系[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 234-240.
[7] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[8] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[9] 宁丽娜, 熊杰. 醒脑开窍针刺法结合舌部针刺治疗脑梗死后构音障碍的疗效观察[J]. 中华针灸电子杂志, 2023, 12(04): 146-150.
[10] 丁晶, 李培雯, 许迎春. 醒脑开窍针刺法在神经急重症中的应用[J]. 中华针灸电子杂志, 2023, 12(04): 161-164.
[11] 李秦鹏, 王其涛, 朱媛媛, 周琦, 刘笑言, 许勇. 颈动脉彩色多普勒超声、颈部CT血管成像及脑部CT灌注成像在脑梗死并发颈动脉狭窄患者中的应用研究[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 482-488.
[12] 朱敏, 李法强. 血清GFAP、UCH-L1联合VILIP-1水平对急性脑梗死神经功能预后不良的预测研究[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 452-457.
[13] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
[14] 李昕, 李永凯, 江树青, 夏来百提姑·赛买提, 杨建中. 急性缺血性脑卒中静脉溶栓后出血转化相关危险因素分析[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 331-336.
[15] 李安, 张秀萍, 白波, 赵阳, 薛国芳, 李东芳. 主动脉夹层术后并发神经系统并发症二例及文献复习[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 373-378.
阅读次数
全文


摘要