[1] |
Maciejczyk M, Żebrowska E, Chabowski A. Insulin resistance and oxidative stress in the brain: what’s new?[J]. Int J Mol Sci, 2019, 20(4): 874.
|
[2] |
Zhang K, Tu M, Gao W, et al. Hollow prussian blue nanozymes drive neuroprotection against ischemic stroke via attenuating oxidative stress, counteracting inflammation, and suppressing cell apoptosis[J]. Nano Lett, 2019, 19(5): 2812-2823.
|
[3] |
Brand MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling[J]. Free Radic Biol Med, 2016, 100: 14-31.
|
[4] |
Hanafy KA, Gomes JA, Selim M. Rationale and current evidence for testing iron chelators for treating stroke[J]. Curr Cardiol Rep, 2019, 21(4): 20.
|
[5] |
Burmistrova O, Olias-Arjona A, Lapresa R, et al. Targeting PFKFB3 alleviates cerebral ischemia-reperfusion injury in mice[J]. Sci Rep, 2019, 9(1): 11670.
|
[6] |
Amantea D, Bagetta G. Excitatory and inhibitory amino acid neurotransmitters in stroke: from neurotoxicity to ischemic tolerance[J]. Curr Opin Pharmacol, 2017, 35: 111-119.
|
[7] |
Shi M, Cao L, Cao X, et al. DR-region of Na+/K+ ATPase is a target to treat excitotoxicity and stroke[J]. Cell Death Dis, 2018, 10(1): 6.
|
[8] |
Chuang DY, Simonyi A, Kotzbauer PT, et al. Cytosolic phospholipase A2 plays a crucial role in ROS/NO signaling during microglial activation through the lipoxygenase pathway[J]. J Neuroinflammation, 2015, 12: 199.
|
[9] |
Chouchani ET, Pell VR, Gaude E, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS[J]. Nature, 2014, 515(7527): 431-435.
|
[10] |
Velimirović M, Jevtić Dožudić G, Selaković V, et al. Effects of vitamin D3 on the NADPH oxidase and matrix metalloproteinase 9 in an animal model of global cerebral ischemia[J]. Oxid Med Cell Longev, 2018, 2018: 3273654.
|
[11] |
Chuang DY, Cui J, Simonyi A, et al. Dietary Sutherlandia and elderberry mitigate cerebral ischemia-induced neuronal damage and attenuate p47phox and phospho-ERK1/2 expression in microglial cells[J]. ASN Neuro, 2014, 6(6): 1759091414554946.
|
[12] |
Liu Y, Feng S, Subedi K, et al. Attenuation of ischemic stroke-caused brain injury by a monoamine oxidase inhibitor involves improved proteostasis and reduced neuroinflammation[J]. Mol Neurobiol, 2020, 57(2): 937-948.
|
[13] |
Kawai T, Okochi Y, Ozaki T, et al. Unconventional role of voltage-gated proton channels (VSOP/Hv1) in regulation of microglial ROS production[J]. J Neurochem, 2017, 142(5): 686-699.
|
[14] |
Tang Z, Gan Y, Liu Q, et al. CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke[J]. J Neuroinflammation, 2014, 11: 26.
|
[15] |
Nissanka N, Moraes CT. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease[J]. FEBS Lett, 2018, 592(5): 728-742.
|
[16] |
Jadavji NM, Farr TD, Lips J, et al. Elevated levels of plasma homocysteine, deficiencies in dietary folic acid and uracil-DNA glycosylase impair learning in a mouse model of vascular cognitive impairment[J]. Behav Brain Res, 2015, 283: 215-226.
|
[17] |
Morris-Blanco KC, Kim T, Lopez MS, et al. Induction of DNA hydroxymethylation protects the brain after stroke[J]. Stroke, 2019, 50(9): 2513-2521.
|
[18] |
Singh M, Kapoor A, Bhatnagar A. Oxidative and reductive metabolism of lipid-peroxidation derived carbonyls[J]. Chem Biol Interact, 2015, 234: 261-273.
|
[19] |
Kotani S, Izawa S, Komai N, et al. Mitochondria-localized phospholipase A 2, AoPlaA, in aspergillus oryzae displays phosphatidylethanolamine-specific activity and is involved in the maintenance of mitochondrial phospholipid composition[J]. Fungal Genet Biol, 2016, 96: 1-11.
|
[20] |
Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285.
|
[21] |
Matsui R, Honda R, Kanome M, et al. Designing antioxidant peptides based on the antioxidant properties of the amino acid side-chains[J]. Food Chem, 2018, 245: 750-755.
|
[22] |
Xu B, Qin Y, Li D, et al. Inhibition of PDE4 protects neurons against oxygen-glucose deprivation-induced endoplasmic reticulum stress through activation of the Nrf-2/HO-1 pathway[J]. Redox Biol, 2020, 28: 101342.
|
[23] |
Xing J, Xu H, Liu C, et al. Melatonin ameliorates endoplasmic reticulum stress in N2a neuroblastoma cell hypoxia-reoxygenation injury by activating the AMPK-Pak2 pathway[J]. Cell Stress Chaperones, 2019, 24(3): 621-633.
|
[24] |
Grochowski C, Litak J, Kamieniak P, et al. Oxidative stress in cerebral small vessel disease. Role of reactive species[J]. Free Radic Res, 2018, 52(1): 1-13.
|
[25] |
Zhao M, Zhu P, Fujino M, et al. Oxidative stress in hypoxic-ischemic encephalopathy: molecular mechanisms and therapeutic strategies[J]. Int J Mol Sci, 2016, 17(12): 2078.
|
[26] |
Jiang S, Deng C, Lv J, et al. Nrf2 weaves an elaborate network of neuroprotection against stroke[J]. Mol Neurobiol, 2017, 54: 1440-1455.
|
[27] |
Tu LF, Cao LF, Zhang YH, et al. Sirt3-dependent deacetylation of COX-1 counteracts oxidative stress-induced cell apoptosis[J]. FASEB J, 2019, 33(12): 14118-14128.
|
[28] |
Wei Y, Wang R, Teng J. Inhibition of calcium/calmodulin-dependent protein kinase IIalpha suppresses oxidative stress in cerebral ischemic rats through targeting glucose 6-phosphate dehydrogenase[J]. Neurochem Res, 2019, 44(7): 1613-1620.
|
[29] |
Ye Y, Jin T, Zhang X, et al. Meisoindigo protects against focal cerebral ischemia-reperfusion injury by inhibiting NLRP3 inflammasome activation and regulating microglia/macrophage polarization via TLR4/NF-κB signaling pathway[J]. Front Cell Neurosci, 2019, 13: 553.
|
[30] |
Bhat SA, Sood A, Shukla R, et al. AT2R Activation prevents microglia pro-inflammatory activation in a NOX-dependent manner: inhibition of PKC activation and p47phox phosphorylation by PP2A[J]. Mol Neurobiol, 2019, 56(4): 3005-3023.
|
[31] |
Gonçalves LV, Herlinger AL, Ferreira TAA, et al. Environmental enrichment cognitive neuroprotection in an experimental model of cerebral ischemia: biochemical and molecular aspects[J]. Behav Brain Res, 2018, 348: 171-183.
|
[32] |
Singhal G, Baune BT. Microglia: an interface between the loss of neuroplasticity and depression[J]. Front Cell Neurosci, 2017, 11: 270.
|
[33] |
Jayaraj RL, Azimullah S, Beiram R, et al. Neuroinflammation: friend and foe for ischemic stroke[J]. J Neuroinflammation, 2019, 169(1): 142.
|
[34] |
Liu Q, Zhang Y. PRDX1 enhances cerebral ischemia-reperfusion injury through activation of TLR4-regulated inflammation and apoptosis[J]. Biochem Biophys Res Commun, 2019, 519(3): 453-461.
|
[35] |
Yang Q, Huang Q, Hu Z, et al. Potential neuroprotective treatment of stroke: targeting excitotoxicity, oxidative stress, and inflammation[J]. Front Neurosci, 2019, 13: 1036.
|
[36] |
Yan W, Sun W, Fan J. et al. Sirt1-ROS-TRAF6 signaling-induced pyroptosis contributes to early injury in ischemic mice[J]. Neurosci Bull, 2020, 36(8): 845-859.
|
[37] |
An P, Xie J, Qiu S, et al. Hispidulin exhibits neuroprotective activities against cerebral ischemia reperfusion injury through suppressing NLRP3-mediated pyroptosis[J]. Life Sci, 2019, 232: 116599.
|
[38] |
Wang L, Negro R, Wu H. TRPM2, linking oxidative stress and Ca2+ permeation to NLRP3 inflammasome activation[J]. Curr Opin Immunol, 2020, 62: 131-135.
|
[39] |
McKenzie BA, Mamik MK, Saito LB, et al. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis[J]. Proc Natl Acad Sci USA, 2018, 115(6): E6065-E6074.
|
[40] |
Xia P, Pan Y, Zhang F, et al. Pioglitazone confers neuroprotection against ischemia-induced pyroptosis due to its inhibitory effects on HMGB-1/RAGE and Rac1/ROS pathway by activating PPAR-γ[J]. Cell Physiol Biochem, 2018, 45(6): 2351-2368.
|
[41] |
Wang H, Chen H, Jin J, et al. Inhibition of the NLRP3 inflammasome reduces brain edema and regulates the distribution of aquaporin-4 after cerebral ischaemia-reperfusion[J]. Life Sci, 2020, 251: 117638.
|
[42] |
Scherz-Shouval R, Shvets E, Elazar Z. Oxidation as a post-translational modification that regulates autophagy[J]. Autophagy, 2007, 3(4): 371-373.
|
[43] |
Nabavi SF, Sureda A, Sanches-Silva A, et al. Novel therapeutic strategies for stroke: the role of autophagy[J]. Crit Rev Clin Lab Sci, 2019, 56: 182-199.
|