切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2020, Vol. 06 ›› Issue (06) : 377 -380. doi: 10.3877/cma.j.issn.2095-9141.2020.06.012

所属专题: 文献

综述

神经生长因子在创伤性脑损伤中的抗炎机制
朱文豪1, 李文臣1, 陈勃1, 王海峰1,()   
  1. 1. 130021 长春,吉林大学第一医院神经创伤外科
  • 收稿日期:2020-06-05 出版日期:2020-12-15
  • 通信作者: 王海峰
  • 基金资助:
    国家自然科学基金(81871555); 吉林省财政厅基金(2018SCZWSZX-006)

Anti-inflammatory mechanism of nerve growth factor in traumatic brain injury

Wenhao Zhu1, Wenchen Li1, Bo Chen1, Haifeng Wang1,()   

  1. 1. Department of Neurotrauma Surgery, First Hospital of Jilin University, Changchun 130021, China
  • Received:2020-06-05 Published:2020-12-15
  • Corresponding author: Haifeng Wang
  • About author:
    Corresponding author: Wang Haifeng, Email:
引用本文:

朱文豪, 李文臣, 陈勃, 王海峰. 神经生长因子在创伤性脑损伤中的抗炎机制[J]. 中华神经创伤外科电子杂志, 2020, 06(06): 377-380.

Wenhao Zhu, Wenchen Li, Bo Chen, Haifeng Wang. Anti-inflammatory mechanism of nerve growth factor in traumatic brain injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2020, 06(06): 377-380.

创伤性脑损伤(TBI)是神经外科较为常见的外伤性疾病。TBI患者在损伤局部发生由免疫炎症瀑布反应导致的继发性损伤,甚至部分患者会出现神经功能缺失的严重症状,因此在TBI患者的治疗措施中,将损伤修复治疗与抗炎修复治疗相结合便显得尤其重要。神经生长因子(NGF)是最早发现且研究最为广泛的神经相关生长因子,曾被认为在参与神经再生、损伤修复方面具有非常重要的作用。近年来越来越多的研究表明NGF可以与免疫细胞表面的受体相互作用,发挥相应的抗炎作用。本文围绕NGF治疗TBI的抗炎机制进行综述,以期为后续的研究及治疗提供一定的参考。

Traumatic brain injury (TBI) is a common traumatic disease in neurosurgery. TBI patients will suffer secondary injury in the local injury caused by immune-inflammatory waterfall reaction, and even some patients will have severe symptoms of nerve function loss. Therefore, in the treatment of TBI patients, it is particularly important to combine injury repair therapy with anti-inflammatory repair therapy. Nerve growth factor (NGF) is the first discovered and most widely studied neurogenic growth factor, which was widely believed to play an important role in nerve regeneration and injury repair. Meanwhile, more and more studies have shown that NGF can interact with receptors on the surface of immune cells to play a corresponding anti-inflammatory role in recent years. Therefore, this paper focuses on the anti-inflammatory effect of NGF in the treatment of TBI, in order to provid some reference for the follow-up study and treatment.

[1]
Draper K, Ponsford J. Cognitive functioning ten years following traumatic brain injury and rehabilitation[J]. Neuropsychology, 2008, 22(5): 618-625.
[2]
Dinet V, Petry KG, Badaut J. Brain-immune interactions and neuroinflammation after traumatic brain injury[J]. Front Neurosci, 2019, 13: 1178.
[3]
Gyoneva S, Ransohoff RM. Inflammatory reaction after traumatic brain injury: therapeutic potential of targeting cell-cell communication by chemokines[J]. Trends Pharmacol Sci, 2015, 36(7): 471-480.
[4]
吴平. TNF-α等炎症因子与重型颅脑损伤预后相关性研究[J].齐齐哈尔医学院学报, 2013, 34(24): 3652-3653.
[5]
Galgano M, Toshkezi G, Qiu X, et al. Traumatic brain injury: Current treatment strategies and future endeavors[J]. Cell Transplant, 2017, 26(7): 1118-1130.
[6]
Bradshaw RA, Mobley W, Rush RA. Nerve growth factor and related substances: a brief history and an introduction to the international NGF meeting series[J]. Int J Mol Sci, 2017, 18(6): 1143.
[7]
Whittemore SR, Seiger A. The expression, localization and functional significance of beta-nerve growth factor in the central nervous system[J]. Brain Res, 1987, 434(4): 439-464.
[8]
Wiesmann C, de Vos AM. Nerve growth factor: Structure and function[J]. Cell Mol Life Sci, 2001, 58(5-6): 748-759.
[9]
Rocco ML, Soligo M, Manni L, et al. Nerve growth factor: early studies and recent clinical trials[J]. Curr Neuropharmacol, 2018, 16(10): 1455-1465.
[10]
冼成恩,刘胜.神经生长因子在颅脑外伤中的应用进展[J].中国现代医生, 2013, 51(11): 29-31.
[11]
Micera A, Lambiase A, Stampachiacchiere B, et al. Nerve growth factor and tissue repair remodeling: trkA(NGFR) and p75(NTR), two receptors one fate[J]. Cytokine Growth Factor Rev, 2007, 18(3-4): 245-256.
[12]
于肇英.神经生长因子的研究[J].生理科学进展, 1988, 19(3): 226-230.
[13]
Greve MW, Zink BJ. Pathophysiology of traumatic brain injury[J]. Mt Sinai J Med, 2009, 76(2): 97-104.
[14]
Dixon KJ. Pathophysiology of traumatic brain injury[J]. Phys Med Rehabil Clin N Am, 2017, 28(2): 215-225.
[15]
Devoto C, Arcurio L, Fetta J, et al. Inflammation relates to chronic behavioral and neurological symptoms in military personnel with traumatic brain injuries[J]. Cell Transplant, 2017, 26(7): 1169-1177.
[16]
Wofford KL, Harris JP, Browne KD, et al. Rapid neuroinflammatory response localized to injured neurons after diffuse traumatic brain injury in swine[J]. Exp Neurol, 2017, 290: 85-94.
[17]
Arredondo LR, Deng C, Ratts RB, et al. Role of nerve growth factor in experimental autoimmune encephalomyelitis[J]. Eur J Immunol, 2001, 31(2): 625-633.
[18]
吕秋石,郭芮兵,姜永军,等.神经生长因子对颅脑外伤大鼠的抗炎作用机制[J].医学研究生学报, 2014, 27(10): 1020-1022.
[19]
甘邻元,周明森,刘洋.注射用鼠神经生长因子对重型颅脑损伤合并肺部感染患者血清相关炎症因子的影响研究[J].脑与神经疾病杂志, 2017, 25(10): 632-635.
[20]
刘朝元,庞海玲,黄怀忠,等.鼠源性神经生长因子联合早期亚低温治疗对严重颅脑外伤患者的脑保护作用及对炎症、应激反应指标的影响[J].海南医学院学报, 2017, 23(7): 958-961, 965.
[21]
Alhadidi Q, Shah ZA. Cofilin mediates LPS -induced microglial cell activation and associated neurotoxicity through activation of NF-κB and JAK-STAT pathway[J]. Mol Neurobiol, 2018, 55(2): 1676-1691.
[22]
Wang LC, Liao LX, Zhao MB, et al. Protosappanin A exerts anti-neuroinflammatory effect by inhibiting JAK2-STAT3 pathway in lipopolysaccharide-induced BV2 microglia[J]. Chin J Nat Med, 2017, 15(9): 674-679.
[23]
许芸,谭凌玲,汪凯,等.带状疱疹患者血液中细胞因子、T淋巴细胞亚群、STAT3功能评估及鼠神经生长因子的干预效果[J].海南医学院学报, 2016, 22(13): 1350-1353.
[24]
Chen WL, Turlova E, Sun CL, et al. Xyloketal B suppresses glioblastoma cell proliferation and migration in vitro through inhibiting TRPM7-regulated PI3K/Akt and MEK/ERK signaling pathways[J]. Mar Drugs, 2015, 13(4): 2505-2525.
[25]
Rosini P, De Chiara G, Bonini P, et al. Nerve growth factor-dependent survival of CESS B cell line is mediated by increased expression and decreased degradation of MAPK phosphatase 1[J]. J Biol Chem, 2004, 279(14): 14016-14023.
[26]
陈峰,邹懿,胡波,等.鼠神经生长因子对坐骨神经痛大鼠背根神经节磷酸化p38 MAPK表达的影响[J].中国临床药理学与治疗学, 2019, 24(4): 411-417.
[27]
Ehrhard PB, Ganter U, Stalder A, et al. Expression of functional trk protooncogene in human monocytes[J]. Proc Natl Acad Sci USA, 1993, 90(12): 5423-5427.
[28]
Prencipe G, Minnone G, Strippoli R, et al. Nerve growth factor downregulates inflammatory response in human monocytes through Trka[J]. J Immunol, 2014, 192(7): 3345-3354.
[29]
Beurel E, Michalek SM, Jope RS. Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3)[J]. Trends Immunol, 2010, 31(1): 24-31.
[30]
Kawai T, Akira S. Signaling to NF-kappaB by toll-like receptors[J]. Trends Mol Med, 2007, 13(11): 460-469.
[31]
Dantzer R. Neuroimmune interactions: from the brain to the immune system and vice versa[J]. Physiol Rev, 2018, 98(1): 477-504.
[32]
Kioussis D, Pachnis V. Immune and nervous systems: more than just a superficial similarity?[J]. Immunity, 2009, 31(5): 705-710.
[33]
Bracci-Laudiero L, De Stefano ME. NGF in early embryogenesis, differentiation, and pathology in the nervous and immune systems[J]. Curr Top Behav Neurosci, 2016, 29: 125-152.
[34]
Caroleo MC, Costa N, Bracci-Laudiero L, et al. Human monocyte/macrophages activate by exposure to LPS overexpress NGF and NGF receptors[J]. J Neuroimmunol, 2001, 113(2): 193-201.
[35]
Bullock ED, Johnson EM,Jr. Nerve growth factor induces the expression of certain cytokine genes and bcl-2 in mast cells. Potential role in survival promotion[J]. J Biol Chem, 1996, 271(44): 27500-27508.
[36]
Samah B, Porcheray F, Gras G. Neurotrophins modulate monocyte chemotaxis without affecting macrophage function[J]. Clin Exp Immunol, 2008, 151(3): 476-486.
[37]
Minnone G, De Benedetti F, Bracci-Laudiero L. NGF and its receptors in the regulation of inflammatory response[J]. Int J Mol Sci, 2017, 18(5): 1028.
[38]
Niewiadomska G, Mietelska-Porowska A, Mazurkiewicz M. The cholinergic system, nerve growth factor and the cytoskeleton[J]. Behav Brain Res, 2011, 221(2): 515-526.
[39]
Weigand LA, Kwong K, Myers AC. The effects of nerve growth factor on nicotinic synaptic transmission in mouse airway parasympathetic neurons[J]. Am J Respir Cell Mol Biol, 2015, 53(4): 443-449.
[40]
Galeazza MT, Garry MG, Yost HJ, et al. Plasticity in the synthesis and storage of substance P and calcitonin gene-related peptide in primary afferent neurons during peripheral inflammation[J]. Neuroscience, 1995, 66(2): 443-458.
[41]
Ng SY, Lee AYW. Traumatic brain injuries: pathophysiology and potential therapeutic targets[J]. Front Cell Neurosci, 2019, 13: 528.
[1] 王一淼, 何培杰. 成纤维细胞在增生性瘢痕形成中的作用及调控因素[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 78-85.
[2] 毛永欢, 奚玲, 陆晨, 刘理想, 喻春钊, 沈晓菲. PI3K/Akt信号通路通过Plk1影响胰腺癌细胞PANC-1对吉西他滨的化疗敏感性[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 135-138.
[3] 刘先勇. 胃Lgr5+干细胞、Mist1+干细胞和Cck2r+干细胞癌变的分子机制[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 183-188.
[4] 王湘, 陈良熠, 虞烽伟, 王正熙, 李秋彤, 李玉红. 骨形态发生蛋白在皮肤创面修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 101-107.
[5] 周逸凡, 金颖. ERK信号通路在人多能干细胞的多能性状态调控中的作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 27-35.
[6] 范博洋, 王宁, 张骞, 王贵玉. 结直肠癌转移调控的环状RNA分子机制研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 426-430.
[7] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[8] 尹丽丽, 管陈, 赵龙, 蒋伟, 秦振志, 李宸羽, 徐岩. 虾青素通过CCN1调节肾间质纤维化的潜在分子作用机制[J]. 中华肾病研究电子杂志, 2022, 11(06): 318-326.
[9] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[10] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[11] 阿迪莱·阿卜杜热西提, 费奥, 邢晓雯, 谢胜强, 张睿, 兰晓娟, 程岗. 三种模拟创伤性脑损伤体外细胞模型的损伤特征比较[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 69-75.
[12] 王蕾, 姜岱山, 朱保锋, 贾寒雨, 沈君华, 张毅. 基于GEO数据库的热射病神经损伤相关基因的生物信息学分析[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 76-84.
[13] 胡霁云, 谢树才, 张丽娜. S100钙结合蛋白B与重症神经研究进展[J]. 中华重症医学电子杂志, 2023, 09(03): 298-303.
[14] 杨思雨, 杨晶晶, 张平, 刘巧, 吴杰, 黄香金, 王怡洁, 付景云. 瘦素通过α1肾上腺素受体介导CaMKKβ-AMPKα信号通路在GT1-7细胞系中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 569-574.
[15] 何敏, 黄桢. 加减知柏地黄丸对特发性中枢性性早熟小鼠骨细胞骨形成蛋白-Smads信号通路的影响[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 214-220.
阅读次数
全文


摘要