[1] |
Holste KG, Xia F, Ye F, et al. Mechanisms of neuroinflammation in hydrocephalus after intraventricular hemorrhage: a review[J]. Fluids Barriers CNS, 2022, 19(1): 28. DOI: 10.1186/s12987-022-00324-0.
|
[2] |
Murphy BP, Inder TE, Rooks V, et al. Posthaemorrhagic ventricular dilatation in the premature infant: natural history and predictors of outcome[J]. Arch Dis Child Fetal Neonatal Ed, 2002, 87(1): F37-F41. DOI: 10.1136/fn.87.1.f37.
|
[3] |
Zhang N, Zhang D, Sun J, et al. Contribution of tumor characteristics and surgery-related factors to symptomatic hydrocephalus after posterior fossa tumor resection: a single-institution experience[J]. J Neurosurg Pediatr, 2023, 31(2): 99-108. DOI: 10.3171/2022.10.Peds22281.
|
[4] |
Chen Z, Zhou M, Wen H, et al. Predictive factors for persistent postoperative hydrocephalus in children undergoing surgical resection of periventricular tumors[J]. Front Neurol, 2023, 14: 1136840. DOI: 10.3389/fneur.2023.1136840.
|
[5] |
Guo ZY, Zhong ZA, Peng P, et al. A scoring system categorizing risk factors to evaluate the need for ventriculoperitoneal shunt in pediatric patients after brain tumor resection[J]. Front Oncol, 2023, 13: 1248553. DOI: 10.3389/fonc.2023.1248553.
|
[6] |
Jabbarli R, Reinhard M, Roelz R, et al. The predictors and clinical impact of intraventricular hemorrhage in patients with aneurysmal subarachnoid hemorrhage[J]. Int J Stroke, 2016, 11(1): 68-76. DOI: 10.1177/1747493015607518.
|
[7] |
Darkwah Oppong M, Gembruch O, Herten A, et al. Intraventricular hemorrhage caused by subarachnoid hemorrhage: does the severity matter?[J]. World Neurosurg, 2018, 111: e693-e702. DOI: 10.1016/j.wneu.2017.12.148.
|
[8] |
Klebe D, McBride D, Krafft PR, et al. Posthemorrhagic hydrocephalus development after germinal matrix hemorrhage: established mechanisms and proposed pathways[J]. J Neurosci Res, 2020, 98(1): 105-120. DOI: 10.1002/jnr.24394.
|
[9] |
Lolansen SD, Rostgaard N, Barbuskaite D, et al. Posthemorrhagic hydrocephalus associates with elevated inflammation and CSF hypersecretion via activation of choroidal transporters[J]. Fluids Barriers CNS, 2022, 19(1): 62. DOI: 10.1186/s12987-022-00360-w.
|
[10] |
Perlman JM. Periventricular-intraventricular hemorrhage in the premature infant-a historical perspective[J]. Semin Perinatol, 2022, 46(5): 151591. DOI: 10.1016/j.semperi.2022.151591.
|
[11] |
Hunt RJ, Nagaraja TN, Knight R, et al. Deuterium MRI for CSF studies in normal and hydrocephalic rats[J]. Neurosurgery, 2024, 70(Supplement_1): 46-47. DOI: 10.1227/neu.0000000000002809_185.
|
[12] |
|
[13] |
Wilson CD, Safavi-Abbasi S, Sun H, et al. Meta-analysis and systematic review of risk factors for shunt dependency after aneurysmal subarachnoid hemorrhage[J]. J Neurosurg, 2017, 126(2): 586-595. DOI: 10.3171/2015.11.Jns152094.
|
[14] |
Czorlich P, Ricklefs F, Reitz M, et al. Impact of intraventricular hemorrhage measured by Graeb and LeRoux score on case fatality risk and chronic hydrocephalus in aneurysmal subarachnoid hemorrhage[J]. Acta Neurochir (Wien), 2015, 157(3): 409-415. DOI: 10.1007/s00701-014-2334-z.
|
[15] |
Rasmussen MK, Mestre H, Nedergaard M. Fluid transport in the brain[J]. Physiol Rev, 2022, 102(2): 1025-1151. DOI: 10.1152/physrev.00031.2020.
|
[16] |
Hladky SB, Barrand MA. The glymphatic hypothesis: the theory and the evidence[J]. Fluids Barriers CNS, 2022, 19(1): 9. DOI: 10.1186/s12987-021-00282-z.
|
[17] |
Ladrón-de-Guevara A, Shang JK, Nedergaard M, et al. Perivascular pumping in the mouse brain: improved boundary conditions reconcile theory, simulation, and experiment[J]. J Theor Biol, 2022, 542: 111103. DOI: 10.1016/j.jtbi.2022.111103.
|
[18] |
Tithof J, Boster KAS, Bork PAR, et al. A network model of glymphatic flow under different experimentally-motivated parametric scenarios[J]. iScience, 2022, 25(5): 104258. DOI: 10.1016/j.isci.2022.104258.
|
[19] |
Du T, Mestre H, Kress BT, et al. Cerebrospinal fluid is a significant fluid source for anoxic cerebral oedema[J]. Brain, 2022, 145(2): 787-797. DOI: 10.1093/brain/awab293.
|
[20] |
Haldrup M, Rasmussen M, Mohamad N, et al. Intraventricular lavage vs external ventricular drainage for intraventricular hemorrhage: a randomized clinical trial[J]. JAMA Netw Open, 2023, 6(10): e2335247. DOI: 10.1001/jamanetworkopen.2023.35247.
|
[21] |
|
[22] |
Garavaglia J, Hardigan T, Turner R, et al. Continuous intrathecal medication delivery with the IRRA flow catheter: pearls and early experience[J]. Oper Neurosurg, 2024, 26(3): 293-300. DOI: 10.1227/ons.0000000000000940.
|
[23] |
|
[24] |
Feng Z, Tan Q, Tang J, et al. Intraventricular administration of urokinase as a novel therapeutic approach for communicating hydrocephalus[J]. Transl Res, 2017, 180: 77-90.e72. DOI: 10.1016/j.trsl.2016.08.004.
|
[25] |
Haldrup M, Miscov R, Mohamad N, et al. Treatment of intraventricular hemorrhage with external ventricular drainage and fibrinolysis: a comprehensive systematic review and meta-analysis of complications and outcome[J]. World Neurosurg, 2023, 174: 183-196.e186. DOI: 10.1016/j.wneu.2023.01.021.
|
[26] |
Hanley DF, Lane K, McBee N, et al. Thrombolytic removal of intraventricular haemorrhage in treatment of severe stroke: results of the randomised, multicentre, multiregion, placebo-controlled CLEAR Ⅲ trial[J]. Lancet, 2017, 389(10069): 603-611. DOI: 10.1016/s0140-6736(16)32410-2.
|
[27] |
Carpenter AB, Lara-Reyna J, Hardigan T, et al. Use of emerging technologies to enhance the treatment paradigm for spontaneous intraventricular hemorrhage[J]. Neurosurg Rev, 2022, 45(1): 317-328. DOI: 10.1007/s10143-021-01616-z.
|
[28] |
Gilhus NE, Deuschl G. Neuroinflammation-a common thread in neurological disorders[J]. Nat Rev Neurol, 2019, 15(8): 429-430. DOI: 10.1038/s41582-019-0227-8.
|
[29] |
Karimy JK, Zhang J, Kurland DB, et al. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus[J]. Nat Med, 2017, 23(8): 997-1003. DOI: 10.1038/nm.4361.
|
[30] |
Wang J, Liu R, Hasan MN, et al. Role of SPAK-NKCC1 signaling cascade in the choroid plexus blood-CSF barrier damage after stroke[J]. J Neuroinflammation, 2022, 19(1): 91. DOI: 10.1186/s12974-022-02456-4.
|
[31] |
Chaudhry SR, Shafique S, Sajjad S, et al. Janus faced HMGB1 and post-aneurysmal subarachnoid hemorrhage (aSAH) inflammation [J]. Int J Mol Sci, 2022, 23(19): 11216. DOI: 10.3390/ijms231911216.
|
[32] |
Cao Y, Liu C, Li G, et al. Metformin alleviates delayed hydrocephalus after intraventricular hemorrhage by inhibiting inflammation and fibrosis[J]. Transl Stroke Res, 2023, 14(3): 364-382. DOI: 10.1007/s12975-022-01026-3.
|
[33] |
Khan OH, Enno TL, Del Bigio MR. Brain damage in neonatal rats following kaolin induction of hydrocephalus[J]. Exp Neurol, 2006, 200(2): 311-320. DOI: 10.1016/j.expneurol.2006.02.113.
|
[34] |
Garrett MC, Otten ML, Starke RM, et al. Synergistic neuroprotective effects of C3a and C5a receptor blockade following intracerebral hemorrhage[J]. Brain Res, 2009, 1298171-177. DOI: 10.1016/j.brainres.2009.04.047.
|
[35] |
Tang J, Jila S, Luo T, et al. C3/C3aR inhibition alleviates GMH-IVH-induced hydrocephalus by preventing microglia-astrocyte interactions in neonatal rats[J]. Neuropharmacology, 2022, 205: 108927. DOI: 10.1016/j.neuropharm.2021.108927.
|
[36] |
Strahle JM, Garton T, Bazzi AA, et al. Role of hemoglobin and iron in hydrocephalus after neonatal intraventricular hemorrhage[J]. Neurosurgery, 2014, 75(6): 696-706. DOI: 10.1227/neu.0000000000000524.
|
[37] |
Strahle JM, Mahaney KB, Morales DM, et al. Longitudinal CSF iron pathway proteins in posthemorrhagic hydrocephalus: associations with ventricle size and neurodevelopmental outcomes[J]. Ann Neurol, 2021, 90(2): 217-226. DOI: 10.1002/ana.26133.
|
[38] |
Wan Y, Fu X, Zhang T, et al. Choroid plexus immune cell response in murine hydrocephalus induced by intraventricular hemorrhage[J]. Fluids Barriers CNS, 2024, 21(1): 37. DOI: 10.1186/s12987-024-00538-4.
|
[39] |
Tan X, Chen J, Keep RF, et al. Prx2 (peroxiredoxin 2) as a cause of hydrocephalus after intraventricular hemorrhage[J]. Stroke, 2020, 51(5): 1578-1586. DOI: 10.1161/strokeaha.119.028672.
|
[40] |
Bian C, Wan Y, Koduri S, et al. Iron-induced hydrocephalus: The role of choroid plexus stromal macrophages[J]. Transl Stroke Res, 2023, 14(2): 238-249. DOI: 10.1007/s12975-022-01031-6.
|
[41] |
Chen T, Tan X, Xia F, et al. Hydrocephalus induced by intraventricular peroxiredoxin-2: the role of macrophages in the choroid plexus[J]. Biomolecules, 2021, 11(5): 654. DOI: 10.3390/biom11050654.
|
[42] |
Gu C, Hao X, Li J, et al. Effects of minocycline on epiplexus macrophage activation, choroid plexus injury and hydrocephalus development in spontaneous hypertensive rats[J]. J Cereb Blood Flow Metab, 2019, 39(10): 1936-1948. DOI: 10.1177/0271678x19836117.
|
[43] |
Toft-Bertelsen TL, Barbuskaite D, Heerfordt EK, et al. Lysophosphatidic acid as a CSF lipid in posthemorrhagic hydrocephalus that drives CSF accumulation via TRPV4-induced hyperactivation of NKCC1[J]. Fluids Barriers CNS, 2022, 19(1): 69. DOI: 10.1186/s12987-022-00361-9.
|
[44] |
Li Y, Nan D, Liu R, et al. Aquaporin 4 mediates the effect of iron overload on hydrocephalus after intraventricular hemorrhage[J]. Neurocrit Care, 2024, 40(1): 225-236. DOI: 10.1007/s12028-023-01746-w.
|
[45] |
Yung YC, Mutoh T, Lin ME, et al. Lysophosphatidic acid signaling may initiate fetal hydrocephalus[J]. Sci Transl Med, 2011, 3(99): 99ra87. DOI: 10.1126/scitranslmed.3002095.
|
[46] |
Lummis NC, Sánchez-Pavón P, Kennedy G, et al. LPA1/3 overactivation induces neonatal posthemorrhagic hydrocephalus through ependymal loss and ciliary dysfunction[J]. Sci Adv, 2019, 5(10): eaax2011. DOI: 10.1126/sciadv.aax2011.
|
[47] |
Preston D, Simpson S, Halm D, et al. Activation of TRPV4 stimulates transepithelial ion flux in a porcine choroid plexus cell line[J]. Am J Physiol Cell Physiol, 2018, 315(3): C357-C366. DOI: 10.1152/ajpcell.00312.2017.
|
[48] |
Simpson S, Preston D, Schwerk C, et al. Cytokine and inflammatory mediator effects on TRPV4 function in choroid plexus epithelial cells[J]. Am J Physiol Cell Physiol, 2019, 317(5): C881-C893. DOI: 10.1152/ajpcell.00205.2019.
|
[49] |
Ross ME. Unlocking the genetic complexity of congenital hydrocephalus[J]. Nat Med, 2020, 26(11): 1682-1683. DOI: 10.1038/s41591-020-1120-0.
|
[50] |
Luyt K, Jary S, Lea C, et al. Ten-year follow-up of a randomised trial of drainage, irrigation and fibrinolytic therapy (DRIFT) in infants with post-haemorrhagic ventricular dilatation[J]. Health Technol Assess, 2019, 23(4): 1-116. DOI: 10.3310/hta23040.
|
[51] |
Etus V, Kahilogullari G, Karabagli H, et al. Early endoscopic ventricular irrigation for the treatment of neonatal posthemorrhagic hydrocephalus: a feasible treatment option or not? A multicenter study[J]. Turk Neurosurg, 2018, 28(1): 137-141. DOI: 10.5137/1019-5149.Jtn.18677-16.0.
|
[52] |
Parenrengi MA, Ranuh I, Suryaningtyas W. Is ventricular lavage a novel treatment of neonatal posthemorrhagic hydrocephalus? A meta analysis[J]. Childs Nerv Syst, 2023, 39(4): 929-935. DOI: 10.1007/s00381-022-05790-3.
|
[53] |
Dvalishvili A, Khinikadze M, Gegia G, et al. Neuroendoscopic lavage versus traditional surgical methods for the early management of posthemorrhagic hydrocephalus in neonates[J]. Childs Nerv Syst, 2022, 38(10): 1897-1902. DOI: 10.1007/s00381-022-05606-4.
|