[1] |
Le Mercier I,Lines JL,Noelle RJ. Beyond CTLA-4 and PD-1, the Generation Z of Negative Checkpoint Regulators[J]. Front Immunol, 2015, 6: 418.
|
[2] |
Monney L,Sabatos CA,Gaglia JL, et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease[J]. Nature, 2002, 415(6871): 536-541.
|
[3] |
Sabatos CA,Chakravarti S,Cha E, et al. Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance[J]. Nat Immunol, 2003, 4(11): 1102-1110.
|
[4] |
Cao E,Zang X,Ramagopal UA, et al. T cell immunoglobulin mucin-3 crystal structure reveals a galectin-9-independent ligand-binding surface[J]. Immunity, 2007, 26(3): 311-321.
|
[5] |
Santiago C,Ballesteros A,Tami C, et al. Structures of T cell immunoglobulin mucin receptors 1 and 2 reveal mechanisms for regulation of immune responses by the Tim receptor family[J]. Immunity, 2007, 26(3): 299-310.
|
[6] |
DeKruyff RH,Bu X,Ballesteros A, et al. T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells[J]. J Immunol, 2010, 184(4): 1918-1930.
|
[7] |
Zhu C,Anderson AC,Kuchroo VK. Tim-3 and Its Regulatory Role in Immune Responses[J]. Curr Top Microbiol Immunol, 2011, 350: 1-15.
|
[8] |
Rodriguez-Manzanet R,DeKrayff R,Kuchroo VK, et al. The costimulatory role of Tim molecules[J]. Immunol Rev, 2009, 229(1): 259-270.
|
[9] |
Cao E,Zang X,Ramagopal UA, et al. T Cell Immunoglobulin Mucin-3 Crystal Structure Reveals a Galectin-9-Independent Ligand-Binding Surface[J]. Immunity, 2007, 26(3):311-321.
|
[10] |
DeKruyff RH,Bu X,Ballesteros A, et al. T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells[J]. J Immunol, 2010, 184(4): 1918-1930.
|
[11] |
Nakayama M,Akiba H,Takeda K, et al. Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation[J]. Blood, 2009, 113(16): 3821-3830.
|
[12] |
Chabtini L,Mfarrej B,Mounayar M, et al. Tim-3 regulates innate immune cells to induce fetomaternal tolerance[J]. J Immunol, 2012, 190(1): 88-96.
|
[13] |
Huang YH,Zhu C,Kondo Y, et al. CEACAM1 regulates Tim-3-mediated tolerance and exhaustion[J]. Nature, 2015, 517(7534): 386-390.
|
[14] |
Japp AS,Kursunel MA,Meier S, et al. Dysfunction of PSA-specific CD8+ T cells in prostate cancer patients correlates with CD38 and Tim-3 expression[J]. Cancer Immunol Immunother, 2015, 64(11): 1487-1494.
|
[15] |
Cai C,Xu YF,Wu ZJ, et al. Tim-3 expression represents dysfunctional tumor infiltrating T cells in renal cell carcinoma[J]. World J Urol, 2016, 34(4): 561-567.
|
[16] |
Kang CW,Dutta A,Chang LY, et al. Apoptosis of tumor infiltrating effector Tim-3+CD8+ T cells in colon cancer[J]. Sci Rep, 2015, 5: 15659.
|
[17] |
Heon EK,Wulan H,Macdonald LP, et al. IL-15 induces strong but short-lived tumor-infiltrating CD8 T cell responses through the regulation of Tim-3 in breast cancer[J]. Biochem Biophys Res Commun, 2015, 464(1): 360-366.
|
[18] |
Yang ZZ,Grote DM,Ziesmer SC, et al. IL-12 upregulates Tim-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma[J]. J Clin Invest, 2012, 122(4): 1271-1282.
|
[19] |
Zeijlemaker W,Kelder A,Oussoren-Brockhoff YJ, et al. A simple one-tube assay for immunophenotypical quantification of leukemic stem cells in acute myeloid leukemia[J]. Leukemia, 2016, 30(2): 439-446.
|
[20] |
Li C,Chen X,Yu X, et al. Tim-3 is highly expressed in T cells in acute myeloid leukemia and associated with clinicopathological prognostic stratification[J]. Int J Clin Exp Pathol, 2014, 7(10): 6880-6888.
|
[21] |
Kong Y,Zhang J,Claxton DF, et al. PD-1(hi)Tim-3(+) T cells associate with and predict leukemia relapse in AML patients post allogeneic stem cell transplantation[J]. Blood Cancer, 2015, 5: e330.
|
[22] |
Prokhorov A,Gibbs BF,Bardelli M, et al. The immune receptor Tim-3 mediates activation of PI3 kinase/mTOR and HIF-1 pathways in human myeloid leukaemia cells[J]. Int J Biochem Cell Biol, 2015, 59: 11-20.
|
[23] |
Gao L,Yu S,Zhang X. Hypothesis: Tim-3/Galectin-9, A New Pathway for Leukemia Stem Cells Survival by Promoting Expansion of Myeloid-Derived Suppressor Cells and Differentiating into Tumor-Associated Macrophages[J]. Cell Biochem Biophys, 2014, 70(1): 273-277.
|
[24] |
Huang X,Bai X,Cao Y, et al. Lymphoma endothelium preferentially expresses Tim-3 and facilitates the progression of lymphoma by mediating immune evasion[J]. J Exp Med, 2010, 207(3): 505-2010.
|
[25] |
Ndhlovu LC,Lopez-Vergès S,Barbour JD, et al. Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity[J]. Blood, 2012, 119(16): 3734-3743.
|
[26] |
Gallois A,Silva I,Osman I, et al. Reversal of natural killer cell exhaustion by Tim-3 blockade[J]. Oncoimmunology, 2014, 3(12): e946365.
|
[27] |
Xu L,Huang Y,Tan L, et al. Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma[J]. Int Immunopharmacol, 2015, 29(2): 635-641.
|
[28] |
Komita H,Koido S,Hayashi K, et al. Expression of immune checkpoint molecules of T cell immunoglobulin and mucin protein 3/galectin-9 for NK cell suppression in human gastrointestinal stromal tumors[J]. Oncol Rep, 2015, 34(4): 2099-2105.
|
[29] |
Wang Z,Zhu J,Gu H, et al. The Clinical Significance of Abnormal Tim-3 Expression on NK Cells from Patients with Gastric Cancer[J]. Immunol Invest, 2015, 44(6): 578-589.
|
[30] |
Folgiero V,Cifaldi L,Pira GL, et al. Tim-3/Gal-9 interaction induces IFN-γ-dependent IDO1 expression in acute myeloid leukemia blast cells[J]. J Hematol Oncol, 2015, 8(1): 36.
|
[31] |
Melero I,Hervas-Stubbs S,Glennie M, et al. Immunos Timulatory monoclonal antibodies for cancer therapy[J]. Nat Rev Cancer, 2007, 7(2): 95-106.
|
[32] |
Melero I,Grimaldi AM,Perez-Gracia JL, et al. Clinical development of immunosTimulatory monoclonal antibodies and opportunities for combination[J]. Clini Cancer Res, 2013, 19(5): 997-1008.
|
[33] |
Schreiber RD,Old LJ,Smyth MJ. Cancer immunoediting: integrating immunity′s roles in cancer suppression and promotion[J]. Science, 2011, 331(6024): 1565-1570.
|
[34] |
Desrichard A,Snyder A,Chan TA. Cancer Neoantigens and Applications for Immunotherapy[J]. Clin Cancer Res, 2016, 22(4): 807-812.
|
[35] |
Sathyanarayanan V,Neelapu SS. Cancer immunotherapy: Strategies for personalization and combinatorial approaches[J]. Mol Oncol, 2015, 9(10): 2043-2053.
|