| [1] |
Hawryluk GWJ, Rubiano AM, Totten AM, et al. Guidelines for the management of severe traumatic brain injury: 2020 update of the decompressive craniectomy recommendations[J]. Neurosurgery, 2020, 87(3): 427-434. DOI: 10.1093/neuros/nyaa278.
|
| [2] |
Okazaki T. Practical and theoretical perspectives on early decompressive craniectomy for traumatic brain injury[J]. Intensive Care Med, 2025, 51(7): 1395-1396. DOI: 10.1007/s00134-025-07939-5.
|
| [3] |
江基尧,冯军峰.颅脑创伤临床救治指南[M]. 5版.上海:上海科学技术出版社, 2024.
|
| [4] |
王忠诚,张玉琪.王忠诚神经外科学[M].武汉:湖北科学技术出版社, 2015.
|
| [5] |
Yamaura A, Makino H. Neurological deficits in the presence of the sinking skin flap following decompressive craniectomy[J]. Neurol Med Chir (Tokyo), 1977, 17(1 Pt 1): 43-53. DOI: 10.2176/nmc.17pt1.43.
|
| [6] |
Iaccarino C, Kolias A, Adelson PD, et al. Consensus statement from the international consensus meeting on post-traumatic cranioplasty[J]. Acta Neurochir (Wien), 2021, 163(2): 423-440. DOI: 10.1007/s00701-020-04663-5.
|
| [7] |
|
| [8] |
Dujovny M, Fernandez P, Alperin N, et al. Post-cranioplasty cerebrospinal fluid hydrodynamic changes: magnetic resonance imaging quantitative analysis[J]. Neurol Res, 1997, 19(3): 311-316. DOI: 10.1080/01616412.1997.11740818.
|
| [9] |
Richaud J, Boetto S, Guell A, et al. Effects of cranioplasty on neurological function and cerebral blood flow[J]. Neurochirurgie, 1985, 31(3): 183-188.
|
| [10] |
|
| [11] |
|
| [12] |
Schuss P, Vatter H, Marquardt G, et al. Cranioplasty after decompressive craniectomy: the effect of timing on postoperative complications[J]. J Neurotrauma, 2012, 29(6): 1090-1095. DOI: 10.1089/neu.2011.2176.
|
| [13] |
Goedemans T, Verbaan D, van der Veer O, et al. Complications in cranioplasty after decompressive craniectomy: timing of the intervention[J]. J Neurol, 2020, 267(5): 1312-1320. DOI: 10.1007/s00415-020-09695-6.
|
| [14] |
Shahid AH, Mohanty M, Singla N, et al. The effect of cranioplasty following decompressive craniectomy on cerebral blood perfusion, neurological, and cognitive outcome[J]. J Neurosurg, 2018, 128(1): 229-235. DOI: 10.3171/2016.10.Jns16678.
|
| [15] |
Worm PV, Finger G, Ludwig do Nascimento T, et al. The impact of cranioplasty on the patients' quality of life[J]. J Craniomaxillofac Surg, 2019, 47(5): 715-719. DOI: 10.1016/j.jcms.2019.01.040.
|
| [16] |
|
| [17] |
Malcolm JG, Rindler RS, Chu JK, et al. Early cranioplasty is associated with greater neurological improvement: a systematic review and meta-analysis[J]. Neurosurgery, 2018, 82(3): 278-288. DOI: 10.1093/neuros/nyx182.
|
| [18] |
Vreeburg RJG, Singh RD, van Erp IAM, et al. Early versus delayed cranioplasty after decompressive craniectomy in traumatic brain injury: a multicenter observational study within CENTER-TBI and Net-QuRe[J]. J Neurosurg, 2024, 141(4): 895-907. DOI: 10.3171/2024.1.Jns232172.
|
| [19] |
Malcolm JG, Rindler RS, Chu JK, et al. Complications following cranioplasty and relationship to timing: a systematic review and meta-analysis[J]. J Clin Neurosci, 2016, 33: 39-51. DOI: 10.1016/j.jocn.2016.04.017.
|
| [20] |
Honeybul S, Morrison DA, Ho KM, et al. A randomised controlled trial comparing autologous cranioplasty with custom-made titanium cranioplasty: long-term follow-up[J]. Acta Neurochir (Wien), 2018, 160(5): 885-891. DOI: 10.1007/s00701-018-3514-z.
|
| [21] |
Gerstl JVE, Rendon LF, Burke SM, et al. Complications and cosmetic outcomes of materials used in cranioplasty following decompressive craniectomy-a systematic review, pairwise meta-analysis, and network meta-analysis[J]. Acta Neurochir (Wien), 2022, 164(12): 3075-3090. DOI: 10.1007/s00701-022-05251-5.
|
| [22] |
Honeybul S, Morrison DA, Ho KM, et al. A randomized controlled trial comparing autologous cranioplasty with custom-made titanium cranioplasty[J]. J Neurosurg, 2017, 126(1): 81-90. DOI: 10.3171/2015.12.Jns152004.
|
| [23] |
Shafiei M, Sourani A, Saboori M, et al. Comparison of subcutaneous pocket with cryopreservation method for storing autologous bone flaps in developing surgical wound infection after cranioplasty: a randomized clinical trial[J]. J Clin Neurosci, 2021, 91: 136-143. DOI: 10.1016/j.jocn.2021.06.042.
|
| [24] |
Al-Salihi MM, Ayyad A, Al-Jebur MS, et al. Subcutaneous preservation versus cryopreservation of autologous bone grafts for cranioplasty: a systematic review and meta-analysis[J]. J Clin Neurosci, 2024, 122: 1-9. DOI: 10.1016/j.jocn.2024.02.025.
|
| [25] |
Liu L, Lu ST, Liu AH, et al. Comparison of complications in cranioplasty with various materials: a systematic review and meta-analysis[J]. Br J Neurosurg, 2020, 34(4): 388-396. DOI: 10.1080/02688697.2020.1742291.
|
| [26] |
Henry J, Amoo M, Taylor J, et al. Complications of cranioplasty in relation to material: systematic review, network meta-analysis and meta-regression[J]. Neurosurgery, 2021, 89(3): 383-394. DOI: 10.1093/neuros/nyab180.
|
| [27] |
Lindner D, Schlothofer-Schumann K, Kern BC, et al. Cranioplasty using custom-made hydroxyapatite versus titanium: a randomized clinical trial[J]. J Neurosurg, 2017, 126(1): 175-183. DOI: 10.3171/2015.10.Jns151245.
|
| [28] |
Amendola F, Vaienti L, Carbonaro R, et al. The antibiotic immersion of custom-made porous hydroxyapatite cranioplasty: a multicentric cohort study[J]. J Craniofac Surg, 2022, 33(5): 1464-1468. DOI: 10.1097/scs.0000000000008363.
|
| [29] |
Lee L, Ker J, Quah BL, et al. A retrospective analysis and review of an institution's experience with the complications of cranioplasty[J]. Br J Neurosurg, 2013, 27(5): 629-635. DOI: 10.3109/02688697.2013.815313.
|
| [30] |
Liang S, Ding P, Zhang S, et al. Prophylactic levetiracetam for seizure control after cranioplasty: a multicenter prospective controlled study[J]. World Neurosurg, 2017, 102: 284-292. DOI: 10.1016/j.wneu.2017.03.020.
|
| [31] |
Chen F, Duan Y, Li Y, et al. Use of an antiepileptic drug to control epileptic seizures associated with cranioplasty: a randomized controlled trial[J]. Int J Surg, 2017, 40: 113-116. DOI: 10.1016/j.ijsu.2017.02.017.
|
| [32] |
Zhang Q, Yuan Y, Li X, et al. A large multicenter retrospective research on embedded cranioplasty and covered cranioplasty[J]. World Neurosurg, 2018, 112: e645-e651. DOI: 10.1016/j.wneu.2018.01.114.
|
| [33] |
Honeybul S, Ho KM. Incidence and risk factors for post-traumatic hydrocephalus following decompressive craniectomy for intractable intracranial hypertension and evacuation of mass lesions[J]. J Neurotrauma, 2012, 29(10): 1872-1878. DOI: 10.1089/neu.2012.2356.
|
| [34] |
Marmarou A, Foda MA, Bandoh K, et al. Posttraumatic ventriculomegaly: hydrocephalus or atrophy? A new approach for diagnosis using CSF dynamics[J]. J Neurosurg, 1996, 85(6): 1026-1035. DOI: 10.3171/jns.1996.85.6.1026.
|
| [35] |
Vedantam A, Yamal JM, Hwang H, et al. Factors associated with shunt-dependent hydrocephalus after decompressive craniectomy for traumatic brain injury[J]. J Neurosurg, 2018, 128(5): 1547-1552. DOI: 10.3171/2017.1.Jns162721.
|
| [36] |
Nasi D, Dobran M, Di Rienzo A, et al. Decompressive craniectomy for traumatic brain injury: the role of cranioplasty and hydrocephalus on outcome[J]. World Neurosurg, 2018, 116: e543-e549. DOI: 10.1016/j.wneu.2018.05.028.
|
| [37] |
Daou B, Klinge P, Tjoumakaris S, et al. Revisiting secondary normal pressure hydrocephalus: does it exist? A review[J]. Neurosurg Focus, 2016, 41(3): E6. DOI: 10.3171/2016.6.Focus16189.
|
| [38] |
Krause-Titz UR, Warneke N, Freitag-Wolf S, et al. Factors influencing the outcome (GOS) in reconstructive cranioplasty[J]. Neurosurg Rev, 2016, 39(1): 133-139. DOI: 10.1007/s10143-015-0678-3.
|
| [39] |
Li G, Wen L, Zhan RY, et al. Cranioplasty for patients developing large cranial defects combined with post-traumatic hydrocephalus after head trauma[J]. Brain Inj, 2008, 22(4): 333-337. DOI: 10.1080/02699050801958353.
|
| [40] |
Heo J, Park SQ, Cho SJ, et al. Evaluation of simultaneous cranioplasty and ventriculoperitoneal shunt procedures[J]. J Neurosurg, 2014, 121(2): 313-318. DOI: 10.3171/2014.2.Jns131480.
|
| [41] |
Jung YT, Lee SP, Cho JI. An improved one-stage operation of cranioplasty and ventriculoperitoneal shunt in patient with hydrocephalus and large cranial defect[J]. Korean J Neurotrauma, 2015, 11(2): 93-99. DOI: 10.13004/kjnt.2015.11.2.93.
|
| [42] |
Meyer RMt, Morton RP, Abecassis IJ, et al. Risk of complications with simultaneous cranioplasty and placement of ventriculoperitoneal shunt[J]. World Neurosurg, 2017, 107: 830-833. DOI: 10.1016/j.wneu.2017.08.034.
|
| [43] |
Zhang J, Deng X, Yuan Q, et al. Staged or simultaneous operations for ventriculoperitoneal shunt and cranioplasty: evidence from a meta-analysis[J]. CNS Neurosci Ther, 2023, 29(11): 3136-3149. DOI: 10.1111/cns.14347.
|
| [44] |
|
| [45] |
Palavani LB, Ferreira MY, Camerotte R, et al. Timing matters: a comprehensive meta-analysis on the optimal period for cranioplasty after severe traumatic brain injury[J]. Oper Neurosurg, 2024, 29(1): 1-18. DOI: 10.1227/ons.0000000000001404.
|
| [46] |
Einarsson HB, Mortensen AF, Nielsen MS, et al. Osteoclast-like multinucleated giant cells reinforce polycaprolactone grafts[J]. Front Immunol, 2025, 16: 1572238. DOI: 10.3389/fimmu.2025.1572238.
|
| [47] |
Las DE, Verwilghen D, Mommaerts MY. A systematic review of cranioplasty material toxicity in human subjects[J]. J Craniomaxillofac Surg, 2021, 49(1): 34-46. DOI: 10.1016/j.jcms.2020.10.002.
|
| [48] |
Spencer R, Manivannan S, Sharouf F, et al. Risk factors for the development of seizures after cranioplasty in patients that sustained traumatic brain injury: a systematic review[J]. Seizure, 2019, 69: 11-16. DOI: 10.1016/j.seizure.2019.03.014.
|
| [49] |
Servadei F, Iaccarino C. The therapeutic cranioplasty still needs an ideal material and surgical timing[J]. World Neurosurg, 2015, 83(2): 133-135. DOI: 10.1016/j.wneu.2014.08.031.
|
| [50] |
|
| [51] |
Williams L, Fan K, Bentley R. Titanium cranioplasty in children and adolescents[J]. J Craniomaxillofac Surg, 2016, 44(7): 789-794. DOI: 10.1016/j.jcms.2016.03.010.
|
| [52] |
Punchak M, Chung LK, Lagman C, et al. Outcomes following polyetheretherketone (PEEK) cranioplasty: Systematic review and meta-analysis[J]. J Clin Neurosci, 2017, 41: 30-35. DOI: 10.1016/j.jocn.2017.03.028.
|
| [53] |
Anderson B, Harris P, Mozaffari K, et al. Comparison of perioperative and long-term outcomes following peek and autologous cranioplasty: a single institution experience and review of the literature[J]. World Neurosurg, 2023, 180: e127-e134. DOI: 10.1016/j.wneu.2023.09.005.
|
| [54] |
Zhang J, Tian W, Chen J, et al. The application of polyetheretherketone (PEEK) implants in cranioplasty[J]. Brain Res Bull, 2019, 153: 143-149. DOI: 10.1016/j.brainresbull.2019.08.010.
|
| [55] |
Slimani M, Baus A, Bich CS, et al. Methylmetacrylate (PMMA) cranioplasty technique: technical interest of intraoperative modeling and review of the literature[J]. Ann Chir Plast Esthet, 2023, 68(2): 99-105. DOI: 10.1016/j.anplas.2022.09.002.
|
| [56] |
Leão RS, Maior JRS, Lemos CAA, et al. Complications with pmma compared with other materials used in cranioplasty: a systematic review and meta-analysis[J]. Braz Oral Res, 2018, 32: e31. DOI: 10.1590/1807-3107bor-2018.vol32.0031.
|
| [57] |
Alshareef M, Alshareef A, Vasas T, et al. Pediatric cranioplasty using hydroxyapatite cement: a retrospective review and preliminary computational model[J]. Pediatr Neurosurg, 2022, 57(1): 40-49. DOI: 10.1159/000520954.
|
| [58] |
Millward CP, Doherty JA, Mustafa MA, et al. Cranioplasty with hydroxyapatite or acrylic is associated with a reduced risk of all-cause and infection-associated explantation[J]. Br J Neurosurg, 2022, 36(3): 385-393. DOI: 10.1080/02688697.2022.2077311.
|
| [59] |
Kono M, Miwa T, Sakamoto Y, et al. Exchange cranioplasty using bioabsorbable hydroxyapatite and collagen complex after removal of an extensive frontal bone tumor in an infant[J]. World Neurosurg, 2020, 142: 375-378. DOI: 10.1016/j.wneu.2020.07.085.
|
| [60] |
Kobayashi K, Yukiue T, Yoshida H, et al. Ultra-high-molecular-weight polyethylene (UHMWPE) wing method for strong cranioplasty[J]. Neurol Med Chir (Tokyo), 2021, 61(9): 549-556. DOI: 10.2176/nmc.oa.2021-0032.
|
| [61] |
Nagai A, Kimura N, Uchida H, et al. Ultra-high-molecular-weight polyethylene merlon shape: novel fixation of artificial bone for cranioplasty[J]. Oper Neurosurg, 2023, 24(4): 404-409. DOI: 10.1227/ons.0000000000000565.
|
| [62] |
Abdelwahed MS, Ali S, Abdelwahed ASK, et al. Cranioplasty using patient specific implants polyether ether ketone versus ultra-high molecular weight polyethylene: a prospective study[J]. J Craniomaxillofac Surg, 2024, 52(11): 1299-1310. DOI: 10.1016/j.jcms.2024.08.004.
|
| [63] |
Chaudri T, Belli A, Davies DJ, et al. Antimicrobial biomaterials for cranioplasty: a systematic review[J]. World Neurosurg, 2025, 1991: 24075. DOI: 10.1016/j.wneu.2025.124075.
|
| [64] |
Shah AM, Jung H, Skirboll S. Materials used in cranioplasty: a history and analysis[J]. Neurosurg Focus, 2014, 36(4): E19. DOI: 10.3171/2014.2.Focus13561.
|
| [65] |
Khader BA, Towler MR. Materials and techniques used in cranioplasty fixation: a review[J]. Mater Sci Eng C Mater Biol Appl, 2016, 66: 315-322. DOI: 10.1016/j.msec.2016.04.101.
|
| [66] |
Mortada H, AlKhashan R, Alhindi N, et al. The management of perioperative pain in craniosynostosis repair: a systematic literature review of the current practices and guidelines for the future[J]. Maxillofac Plast Reconstr Surg, 2022, 44(1): 33. DOI: 10.1186/s40902-022-00363-5.
|
| [67] |
Perry AC, Lee JJ, Kilcommons S, et al. Immediate and long-term outcomes of autologous and alloplastic cranioplasty in pediatric population[J]. J Craniofac Surg, 2025, 36(7): 2457-2461. DOI: 10.1097/scs.0000000000011463.
|
| [68] |
Abu-Ghname A, Banuelos J, Oliver JD, et al. Outcomes and complications of pediatric cranioplasty: a systematic review[J]. Plast Reconstr Surg, 2019, 144(3): 433e-443e. DOI: 10.1097/prs.0000000000005933.
|
| [69] |
Chen R, Ye G, Zheng Y, et al. Optimal timing of cranioplasty and predictors of overall complications after cranioplasty: the impact of brain collapse[J]. Neurosurgery, 2023, 93(1): 84-94. DOI: 10.1227/neu.0000000000002376.
|