[1] |
Maroufi SF, Farahbakhsh F, Macdonald RL, et al. Risk factors for recurrence of chronic subdural hematoma after surgical evacuation: a systematic review and meta-analysis[J]. Neurosurg Rev, 2023, 46(1): 270. DOI: 10.1007/s10143-023-02175-1.
|
[2] |
Bounajem MT, Campbell RA, Denorme F, et al. Paradigms in chronic subdural hematoma pathophysiology: current treatments and new directions[J]. J Trauma Acute Care Surg, 2021, 91(6): e134-e141. DOI: 10.1097/ta.0000000000003404.
|
[3] |
|
[4] |
赵国政,刘超,钱冬喜,等.衰老相关分泌表型在复发慢性硬膜下血肿患者中表达及其预测模型构建[J].中国老年学杂志, 2024, 44(11): 2600-2603.
|
[5] |
Li CW, Yu K, Shyh-Chang N, et al. Pathogenesis of sarcopenia and the relationship with fat mass: descriptive review[J]. J Cachexia Sarcopenia Muscle, 2022, 13(2): 781-794. DOI: 10.1002/jcsm.12901.
|
[6] |
Dubinski D, Won SY, Behmanesh B, et al. Significance of temporal muscle thickness in chronic subdural hematoma[J]. J Clin Med, 2022, 11(21): 6456. DOI: 10.3390/jcm11216456.
|
[7] |
Jeon GJ, Rim HT, Lee HS, et al. Factors for predicting recurrence after burr hole drainage for chronic subdural hematoma: a retrospective study[J]. Neurosurg Rev, 2023, 46(1): 306. DOI: 10.1007/s10143-023-02222-x.
|
[8] |
Wilkinson DJ, Piasecki M, Atherton PJ. The age-related loss of skeletal muscle mass and function: measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans[J]. Ageing Res Rev, 2018, 47: 123-132. DOI: 10.1016/j.arr.2018.07.005.
|
[9] |
Won SY, Zagorcic A, Dubinski D, et al. Excellent accuracy of ABC/2 volume formula compared to computer-assisted volumetric analysis of subdural hematomas[J]. PLoS One, 2018, 13(6): e0199809. DOI: 10.1371/journal.pone.0199809.
|
[10] |
Kipele M, Buchfelder M, Taudte RV, et al. Immunometabolic profiling of chronic subdural hematoma through untargeted mass spectrometry analysis: preliminary findings of a novel approach[J]. Diagnostics (Basel), 2023, 13(21): 3345. DOI: 10.3390/diagnostics13213345.
|
[11] |
Jensen TSR, Andersen-Ranberg N, Poulsen FR, et al. The Danish chronic subdural hematoma study-risk factors for second recurrence [J]. World Neurosurg, 2022, 168: e178-e186. DOI: 10.1016/j.wneu.2022.09.072.
|
[12] |
|
[13] |
Edlmann E, Giorgi-Coll S, Whitfield PC, et al. Pathophysiology of chronic subdural haematoma: inflammation, angiogenesis and implications for pharmacotherapy[J]. J Neuroinflammation, 2017, 14(1): 108. DOI: 10.1186/s12974-017-0881-y.
|
[14] |
|
[15] |
Weigel R, Schilling L, Krauss JK. The pathophysiology of chronic subdural hematoma revisited: emphasis on aging processes as key factor[J]. Geroscience, 2022, 44(3): 1353-1371. DOI: 10.1007/s11357-022-00570-y.
|
[16] |
Uyar B, Palmer D, Kowald A, et al. Single-cell analyses of aging, inflammation and senescence[J]. Ageing Res Rev, 2020, 64: 101156. DOI: 10.1016/j.arr.2020.101156.
|
[17] |
Li X, Li C, Zhang W, et al. Inflammation and aging: signaling pathways and intervention therapies[J]. Signal Transduct Target Ther, 2023, 8(1): 239. DOI: 10.1038/s41392-023-01502-8.
|
[18] |
Birch J, Gil J. Senescence and the sasp: many therapeutic avenues[J]. Genes Dev, 2020, 34(23-24): 1565-1576. DOI: 10.1101/gad.343129.120.
|
[19] |
Ouvrier B, Ismael S, Bix GJ. Senescence and SASP are potential therapeutic targets for ischemic stroke[J]. Pharmaceuticals (Basel), 2024, 17(3): 312. DOI: 10.3390/ph17030312.
|
[20] |
He Y, Xie W, Li H, et al. Cellular senescence in sarcopenia: possible mechanisms and therapeutic potential[J]. Front Cell Dev Biol, 2021, 9: 793088. DOI: 10.3389/fcell.2021.793088.
|
[21] |
Englund DA, Zhang X, Aversa Z, et al. Skeletal muscle aging, cellular senescence, and senotherapeutics: current knowledge and future directions[J]. Mech Ageing Dev, 2021, 200: 111595. DOI: 10.1016/j.mad.2021.111595.
|
[22] |
Tuttle CSL, Thang LAN, Maier AB. Markers of inflammation and their association with muscle strength and mass: a systematic review and meta-analysis[J]. Ageing Res Rev, 2020, 64: 101185. DOI: 10.1016/j.arr.2020.101185.
|
[23] |
Dalle S, Rossmeislova L, Koppo K. The role of inflammation in age-related sarcopenia[J]. Front Physiol, 2017, 8: 1045. DOI: 10.3389/fphys.2017.01045.
|
[24] |
Bian AL, Hu HY, Rong YD, et al. A study on relationship between elderly sarcopenia and inflammatory factors IL-6 and TNF-α[J]. Eur J Med Res, 2017, 22(1): 25. DOI: 10.1186/s40001-017-0266-9.
|
[25] |
Frasca D, Blomberg BB. Inflammaging decreases adaptive and innate immune responses in mice and humans[J]. Biogerontology, 2016, 17(1): 7-19. DOI: 10.1007/s10522-015-9578-8.
|
[26] |
Tolonen A, Pakarinen T, Sassi A, et al. Methodology, clinical applications, and future directions of body composition analysis using computed tomography (CT) images: a review[J]. Eur J Radiol, 2021, 145: 109943. DOI: 10.1016/j.ejrad.2021.109943.
|
[27] |
Korhonen TK, Arponen O, Steinruecke M, et al. Reduced temporal muscle thickness predicts shorter survival in patients undergoing chronic subdural haematoma drainage[J]. J Cachexia Sarcopenia Muscle, 2024, 15(4): 1441-1450. DOI: 10.1002/jcsm.13489.
|