[1] |
Sadeghi S, Davoodvandi A, Pourhanifeh MH, et al. Anti-cancer effects of cinnamon: insights into its apoptosis effects[J]. Eur J Med Chem, 2019, 178: 131-140.
|
[2] |
Chiang YF, Chen HY, Huang KC, et al. Dietary antioxidant trans-cinnamaldehyde reduced visfatin-induced breast cancer progression: in vivo and In vitro study[J]. Antioxidants (Basel), 2019, 8(12): 625.
|
[3] |
Jing X, Yang F, Shao C, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment[J]. Mol Cancer, 2019, 18(1): 157.
|
[4] |
Xu Q, Ahmed AK, Zhu Y, et al. Oncogenic microRNA-20a is downregulated by the HIF-1α/c-MYC pathway in IDH1 R132H-mutant glioma[J]. Biochem Biophys Res Commun, 2018, 499(4): 882-888.
|
[5] |
Kim MC, Hwang SH, Kim NY, et al. Hypoxia promotes acquisition of aggressive phenotypes in human malignant mesothelioma[J]. BMC Cancer, 2018, 18(1): 819.
|
[6] |
Xie GY, Ma J, Guan L, et al. Proliferation effects of cinnamon extract on human HeLa and HL-60 tumor cell lines[J]. Eur Rev Med Pharmacol Sci, 2018, 22(16): 5347-5354.
|
[7] |
Wu CE, Zhuang YW, Zhou JY, et al. Cinnamaldehyde enhances apoptotic effect of oxaliplatin and reverses epithelial-mesenchymal transition and stemnness in hypoxic colorectal cancer cells[J]. Exp Cell Res, 2019, 383(1): 111500.
|
[8] |
He W, Zhang W, Zheng Q, et al. Cinnamaldehyde causes apoptosis of myeloid-derived suppressor cells through the activation of TLR4[J]. Oncol Lett, 2019, 18(3): 2420-2426.
|
[9] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
|
[10] |
Arvind R, Chandana SR, Borad MJ, et al. Tumor-treating fields: A fourth modality in cancer treatment, new practice updates[J]. Crit Rev Oncol Hematol, 2021, 168: 103535.
|
[11] |
Chen L, Wang J, Wu J, et al. Indirubin suppresses ovarian cancer cell viabilities through the STAT3 signaling pathway[J]. Drug Des Devel Ther, 2018, 12: 3335-3342.
|
[12] |
Mun EJ, Babiker HM, Weinberg U, et al. Tumor-treating fields: a fourth modality in cancer treatment[J]. Clin Cancer Res, 2018, 24(2): 266-275.
|
[13] |
Kuruppu AI, Paranagama P, Goonasekara CL. Medicinal plants commonly used against cancer in traditional medicine formulae in Sri Lanka[J]. Saudi Pharm J, 2019, 27(4): 565-573.
|
[14] |
Xu Q, Wu N, Li X, et al. Inhibition of PTP1B blocks pancreatic cancer progression by targeting the PKM2/AMPK/mTOC1 pathway[J]. Cell Death Dis, 2019, 10(12): 874.
|
[15] |
Kostrzewa T, Przychodzen P, Gorska-Ponikowska M, et al. Curcumin and cinnamaldehyde as PTP1B inhibitors with antidiabetic and anticancer potential[J]. Anticancer Res, 2019, 39(2): 745-749.
|
[16] |
Chen JC, Hsieh PS, Chen SM, et al. Effects of cinnamaldehyde on the viability and expression of chemokine receptor genes in temozolomide-treated glioma cells[J]. In Vivo, 2020, 34(2): 595-599.
|
[17] |
Akanji MA, Rotimi D, Adeyemi OS. Hypoxia-inducible factors as an alternative source of treatment strategy for cancer[J]. Oxid Med Cell Longev, 2019, 2019: 8547846.
|
[18] |
Noman MZ, Hasmim M, Lequeux A, et al. Improving cancer immunotherapy by targeting the hypoxic tumor microenvironment: new opportunities and challenges[J]. Cells, 2019, 8(9): 1083.
|
[19] |
Liu Z, Tu K, Wang Y, et al. Hypoxia accelerates aggressiveness of hepatocellular carcinoma cells involving oxidative stress, epithelial-mesenchymal transition and non-canonical hedgehog signaling[J]. Cell Physiol Biochem, 2017, 44(5): 1856-1868.
|
[20] |
Peng X, Gao H, Xu R, et al. The interplay between HIF-1α and noncoding RNAs in cancer[J]. J Exp Clin Cancer Res, 2020, 39(1): 27.
|
[21] |
Li H, Rokavec M, Jiang L, et al. Antagonistic effects of p53 and HIF1A on microRNA-34a regulation of PPP1R11 and STAT3 and hypoxia-induced epithelial to mesenchymal transition in colorectal cancer cells[J]. Gastroenterology, 2017, 153(2): 505-520.
|
[22] |
Li J, Shen J, Wang Z, et al. ELTD1 facilitates glioma proliferation, migration and invasion by activating JAK/STAT3/HIF-1α signaling axis[J]. Sci Rep, 2019, 9(1): 13904.
|
[23] |
Tamura R, Tanaka T, Akasaki Y, et al. The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: perspectives for therapeutic implications[J]. Med Oncol, 2019, 37(1): 2.
|
[24] |
Wang G, Wang JJ, Fu XL, et al. Advances in the targeting of HIF-1α and future therapeutic strategies for glioblastoma multiforme (Review)[J]. Oncol Rep, 2017, 37(2): 657-670.
|
[25] |
Ahmad F, Dixit D, Joshi SD, et al. G9a inhibition induced PKM2 regulates autophagic responses[J]. Int J Biochem Cell Biol, 2016, 78: 87-95.
|
[26] |
Okamoto K, Ito D, Miyazaki K, et al. Microregional antitumor activity of a small-molecule hypoxia-inducible factor 1 inhibitor[J]. Int J Mol Med, 2012, 29(4): 541-549.
|
[27] |
Zhu Y, Liu X, Zhao P, et al. Celastrol suppresses glioma vasculogenic mimicry formation and angiogenesis by blocking the PI3K/Akt/mTOR signaling pathway[J]. Front Pharmacol, 2020, 11: 25.
|
[28] |
Park SJ, Kim H, Kim SH, et al. Epigenetic downregulation of STAT6 increases HIF-1α expression via mTOR/S6K/S6, leading to enhanced hypoxic viability of glioma cells[J]. Acta Neuropathol Commun, 2019, 7(1): 149.
|
[29] |
Chen Z, Mou L, Pan Y, et al. CXCL8 promotes glioma progression by activating the JAK/STAT1/HIF-1α/snail signaling axis[J]. Onco Targets Ther, 2019, 12: 8125-8138.
|
[30] |
Wei M, Ma R, Huang S, et al. Oroxylin a increases the sensitivity of temozolomide on glioma cells by hypoxia-inducible factor 1α/hedgehog pathway under hypoxia[J]. J Cell Physiol, 2019, 234(10): 17392-17404.
|
[31] |
Qiu GZ, Liu Q, Wang XG, et al. Hypoxia-induced USP22-BMI1 axis promotes the stemness and malignancy of glioma stem cells via regulation of HIF-1α[J]. Life Sci, 2020, 247: 117438.
|
[32] |
Yang XS, Xu ZW, Yi TL, et al. Ouabain suppresses the growth and migration abilities of glioma U-87MG cells through inhibiting the Akt/mTOR signaling pathway and downregulating the expression of HIF-1α[J]. Mol Med Rep, 2018, 17(4): 5595-5600.
|
[33] |
Jin P, Shin SH, Chun YS, et al. Astrocyte-derived CCL20 reinforces HIF-1-mediated hypoxic responses in glioblastoma by stimulating the CCR6-NF-κB signaling pathway[J]. Oncogene, 2018, 37(23): 3070-3087.
|
[34] |
Ge X, Pan MH, Wang L, et al. Hypoxia-mediated mitochondria apoptosis inhibition induces temozolomide treatment resistance through miR-26a/Bad/Bax axis[J]. Cell Death Dis, 2018, 9(11): 1128.
|
[35] |
Nan Y, Guo H, Guo L, et al. MiRNA-451 inhibits glioma cell proliferation and invasion through the mTOR/HIF-1α/VEGF signaling pathway by targeting CAB39[J]. Hum Gene Ther Clin Dev, 2018, 29(3): 156-166.
|
[36] |
Maugeri G, D'Amico AG, Rasà DM, et al. Caffeine effect on HIFs/VEGF pathway in human glioblastoma cells exposed to hypoxia[J]. Anticancer Agents Med Chem, 2018, 18(10): 1432-1439.
|
[37] |
Huang W, Ding X, Ye H, et al. Hypoxia enhances the migration and invasion of human glioblastoma U87 cells through PI3K/Akt/mTOR/HIF-1α pathway[J]. Neuroreport, 2018, 29(18): 1578-1585.
|
[38] |
Jung N, Kwon HJ, Jung HJ. Downregulation of mitochondrial UQCRB inhibits cancer stem cell-like properties in glioblastoma[J]. Int J Oncol, 2018, 52(1): 241-251.
|
[39] |
Vallee A, Guillevin R, Vallee JN. Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas[J]. Rev Neurosci, 2018, 29(1): 71-91.
|
[40] |
Lo Dico A, Valtorta S, Ottobrini L, et al. Role of metformin and AKT axis modulation in the reversion of hypoxia induced TMZ-resistance in glioma cells[J]. Front Oncol, 2019, 9: 463.
|
[41] |
Patra K, Jana S, Sarkar A, et al. The inhibition of hypoxia-induced angiogenesis and metastasis by cinnamaldehyde is mediated by decreasing HIF-1α protein synthesis via PI3K/Akt pathway[J]. Biofactors, 2019, 45(3): 401-415.
|
[42] |
Zhang K, Han ES, Dellinger TH, et al. Cinnamon extract reduces VEGF expression via suppressing HIF-1α gene expression and inhibits tumor growth in mice[J]. Mol Carcinog, 2017, 56(2): 436-446.
|