[1] |
Huria T, Beeraka NM, Al-Ghamdi B, et al. Premyelinated central axons express neurotoxic NMDA receptors: relevance to early developing white-matter injury[J]. J Cereb Blood Flow Metab, 2015, 35(4): 543-553.
|
[2] |
Bartlett TE, Wang YT. The intersections of NMDAR-dependent synaptic plasticity and cell survival[J]. Neuropharmacology, 2013, 74: 59-68.
|
[3] |
Paoletti P. Molecular basis of NMDA receptor functional diversity[J]. Eur J Neurosci, 2011, 33(8): 1351-1365.
|
[4] |
Pagadala P, Park CK, Bang S, et al. Loss of NR1 subunit of NMDARs in primary sensory neurons leads to hyperexcitability and pain hypersensitivity: involvement of Ca(2+)-activated small conductance potassium channels[J]. J Neurosci, 2013, 33(33): 13425-13430.
|
[5] |
Chung C, Marson JD, Zhang QG, et al. Neuroprotection Mediated through GluN2C-Containing N-methyl-D-aspartate(NMDA) Receptors Following Ischemia[J]. Sci Rep, 2016, 6: 37033.
|
[6] |
Geddes AE, Huang XF, Newell KA. Reciprocal signalling between NR2 subunits of the NMDA receptor and neuregulin1 and their role in schizophrenia[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2011, 35(4): 896-904.
|
[7] |
Zhang Z, Sun QQ. Development of NMDA NR2 subunits and their roles in critical period maturation of neocortical GABAergic interneurons[J]. Dev Neurobiol, 2011, 71(3): 221-245.
|
[8] |
Awobuluyi M, Yang J, Ye Y, et al. Subunit-specific roles of glycine-binding domains in activation of NR1/NR3 N-methyl-D-aspartate receptors[J]. Mol Pharmacol, 2007, 71(1): 112-122.
|
[9] |
Chatterton JE, Awobuluyi M, Premkumar LS, et al. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits[J]. Nature, 2002, 415(6873): 793-798.
|
[10] |
De Rossi P, Harde E, Dupuis JP, et al. Co-activation of VEGF and NMDA receptors promotes synaptic targeting of AMPA receptors[J]. Mol Psychiatry, 2016, 21(12): 1647.
|
[11] |
Beppu K, Kosai Y, Kido MA, et al. Expression, subunit composition, and function of AMPA-type glutamate receptors are changed in activated microglia; possible contribution of GluA2 (GluR-B)-deficiency under pathological conditions[J]. Glia, 2013, 61(6): 881-891.
|
[12] |
Diano S, Naftolin F, Horvath TL. Kainate glutamate receptors (GluR5-7) in the rat arcuate nucleus: relationship to tanycytes, astrocytes, neurons and gonadal steroid receptors[J]. J Neuroendocrinol, 1998, 10(4): 239-247.
|
[13] |
Kumar J, Schuck P, Mayer ML. Structure and assembly mechanism for heteromeric kainate receptors[J]. Neuron, 2011, 71(2): 319-331.
|
[14] |
Cosgrove KE, Galvan EJ, Barrionuevo G, et al. mGluRs modulate strength and timing of excitatory transmission in hippocampal area CA3[J]. Mol Neurobiol, 2011, 44(1): 93-101.
|
[15] |
Bhattacharyya S. Inside story of Group I Metabotropic Glutamate Receptors (mGluRs)[J]. Int J Biochem Cell Biol, 2016, 77(Pt B): 205-212.
|
[16] |
Kiritoshi T, Neugebauer V. Group II mGluRs modulate baseline and arthritis pain-related synaptic transmission in the rat medial prefrontal cortex[J]. Neuropharmacology, 2015, 95: 388-394.
|
[17] |
Schmidt HD, Schassburger RL, Guercio LA, et al. Stimulation of mGluR5 in the accumbens shell promotes cocaine seeking by activating PKC gamma[J]. J Neurosci, 2013, 33(35): 14160-14169.
|
[18] |
Georgiou AL, Guo L, Cordeiro MF, et al. Changes in the modulation of retinocollicular transmission through group III mGluRs long after an increase in intraocular pressure in a rat model of glaucoma[J]. Vis Neurosci, 2012, 29(4-5): 237-246.
|
[19] |
Shen KZ, Johnson SW. Group I mGluRs evoke K-ATP current by intracellular Ca2+ mobilization in rat subthalamus neurons[J]. J Pharmacol Exp Ther, 2013, 345(1): 139-150.
|
[20] |
Schaffhauser H, Cai Z, Hubalek F, et al. cAMP-dependent protein kinase inhibits mGluR2 coupling to G-proteins by direct receptor phosphorylation[J]. J Neurosci, 2000, 20(15): 5663-5670.
|
[21] |
Cattani D, de Liz Oliveira Cavalli VL, Heinz Rieg CE, et al. Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: Involvement of glutamate excitotoxicity[J]. Toxicology, 2014, 320: 34-45.
|
[22] |
Bell KF, Bent RJ, Meese-Tamuri S, et al. Calmodulin kinase IV-dependent CREB activation is required for neuroprotection via NMDA receptor-PSD95 disruption[J]. J Neurochem, 2013, 126(2): 274-287.
|
[23] |
Zhou X, Hollern D, Liao J, et al. NMDA receptor-mediated excitotoxicity depends on the coactivation of synaptic and extrasynaptic receptors[J]. Cell Death Dis, 2013, 4: e560.
|
[24] |
Chen F, Jiang L, Shen C, et al. Neuroprotective effect of epigallocatechin-3-gallate against N-methyl-D-aspartate-induced excitotoxicity in the adult rat retina[J]. Acta Ophthalmol, 2012, 90(8): e609-e615.
|
[25] |
李潇潇,卢圣锋,朱冰梅,等.兴奋性氨基酸毒性与缺血性脑中风及针刺的调整作用[J].针刺研究, 2016, 41(2): 180-185.
|
[26] |
Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: Identifying novel targets for neuroprotection[J]. Prog Neurobiol, 2014, 115: 157-188.
|
[27] |
Severino PC, Muller Gdo A, Vandresen-Filho S, et al. Cell signaling in NMDA preconditioning and neuroprotection in convulsions induced by quinolinic acid[J]. Life Sci, 2011, 89(15-16): 570-576.
|
[28] |
Arundine M, Tymianski M. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury[J]. Cell Mol Life Sci, 2004,61(6):657-668.
|
[29] |
Ye HB, Shi HB, Yin SK. Mechanisms underlying taurine protection against glutamate-induced neurotoxicity[J]. Can J Neurol Sci, 2013, 40(5): 628-634.
|
[30] |
Afanador L, Mexhitaj I, Diaz C, et al. The role of the neuropeptide somatostatin on methamphetamine and glutamate-induced neurotoxicity in the striatum of mice[J]. Brain Res, 2013, 1510: 38-47.
|
[31] |
Croce N, Bernardini S, Di Cecca S, et al. Hydrochloric acid alters the effect of L-glutamic acid on cell viability in human neuroblastoma cell cultures[J]. J Neurosci Methods, 2013, 217(1-2): 26-30.
|
[32] |
Sachser RM, Santana F, Crestani AP, et al. Forgetting of long-term memory requires activation of NMDA receptors, L-type voltage-dependent Ca2+ channels, and calcineurin[J]. Sci Rep, 2016, 6: 22771.
|
[33] |
Kumar A, Singh RL, Babu GN. Cell death mechanisms in the early stages of acute glutamate neurotoxicity[J]. Neurosci Res, 2010, 66(3): 271-278.
|
[34] |
Rameau GA, Tukey DS, Garcin-Hosfield ED, et al. Biphasic coupling of neuronal nitric oxide synthase phosphorylation to the NMDA receptor regulates AMPA receptor trafficking and neuronal cell death[J]. J Neurosci, 2007, 27(13): 3445-3455.
|
[35] |
Wu PH, Coultrap SJ, Browning MD, et al. Functional adaptation of the N-methyl-D-aspartate receptor to inhibition by ethanol is modulated by striatal-enriched protein tyrosine phosphatase and p38 mitogen-activated protein kinase[J]. Mol Pharmacol, 2011, 80(3): 529-537.
|
[36] |
Lau C G, Takeuchi K, Rodenas-Ruano A, et al. Regulation of NMDA receptor Ca2+ signalling and synaptic plasticity[J]. Biochem Soc Trans, 2009, 37(Pt 6): 1369-1374.
|
[37] |
Bodhinathan K, Kumar A, Foster TC. Intracellular redox state alters NMDA receptor response during aging through Ca2+/calmodulin-dependent protein kinase II[J]. J Neurosci, 2010, 30(5): 1914-1924.
|
[38] |
Lu CW, Lin TY, Wang SJ. Memantine depresses glutamate release through inhibition of voltage-dependent Ca2+ entry and protein kinase C in rat cerebral cortex nerve terminals: an NMDA receptor-independent mechanism[J]. Neurochem Int, 2010, 57(2): 168-176.
|
[39] |
Vs SK, Gopalakrishnan A, Naziroglu M, et al. Calcium ion-The Key Player in Cerebral Ischemia[J]. Curr Med Chem, 2014, 21(18): 2065-2075.
|
[40] |
McGee MA, Abdel-Rahman AA. Enhanced vascular neuronal nitric-oxide synthase-derived nitric-oxide production underlies the pressor response caused by peripheral N-methyl-D-aspartate receptor activation in conscious rats[J]. J Pharmacol Exp Ther, 2012, 342(2): 461-471.
|
[41] |
Hu Z, Bian X, Liu X, et al. Honokiol protects brain against ischemia-reperfusion injury in rats through disrupting PSD95-nNOS interaction[J]. Brain Res, 2013, 1491: 204-212.
|
[42] |
Wang Y, Rao W, Zhang C, et al. Scaffolding protein Homer1a protects against NMDA-induced neuronal injury[J]. Cell Death Dis, 2015, 6(8): e1843.
|
[43] |
Courtney MJ, Li LL, Lai YY. Mechanisms of NOS1AP action on NMDA receptor-nNOS signaling[J]. Front Cell Neurosci, 2014, 8: 252.
|
[44] |
Di JH, Li C, Yu HM, et al. nNOS downregulation attenuates neuronal apoptosis by inhibiting nNOS-GluR6 interaction and GluR6 nitrosylation in cerebral ischemic reperfusion[J]. Biochem Biophys Res Commun, 2012, 420(3): 594-599.
|
[45] |
Luo CX, Zhu DY. Research progress on neurobiology of neuronal nitric oxide synthase[J]. Neurosci Bull, 2011, 27(1): 23-35.
|
[46] |
Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: Identifying novel targets for neuroprotection[J]. Prog Neurobiol, 2014, 115: 157-188.
|
[47] |
Canzoniero LM, Granzotto A, Turetsky DM, et al. nNOS(+) striatal neurons, a subpopulation spared in Huntington′s Disease, possess functional NMDA receptors but fail to generate mitochondrial ROS in response to an excitotoxic challenge[J]. Front Physiol, 2013, 4: 112.
|
[48] |
Chen Z, Muscoli C, Doyle T, et al. NMDA-receptor activation and nitroxidative regulation of the glutamatergic pathway during nociceptive processing[J]. Pain, 2010, 149(1): 100-106.
|
[49] |
Izumi Y, Zorumski CF. Neuroprotective effects of pyruvate following NMDA-mediated excitotoxic insults in hippocampal slices[J]. Neurosci Lett, 2010, 478(3): 131-135.
|
[50] |
Im DS, Jeon JW, Lee JS, et al. Role of the NMDA receptor and iron on free radical production and brain damage following transient middle cerebral artery occlusion[J]. Brain Res, 2012, 1455: 114-123.
|
[51] |
Yuki K, Yoshida T, Miyake S, et al. Neuroprotective role of superoxide dismutase 1 in retinal ganglion cells and inner nuclear layer cells against N-methyl-d-aspartate-induced cytotoxicity[J]. Exp Eye Res, 2013, 115: 230-238.
|
[52] |
Gonzalez-Zulueta M, Ensz LM, Mukhina G, et al. Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity[J]. J Neurosci, 1998, 18(6): 2040-2055.
|
[53] |
Peluffo H, Acarin L, Aris A, et al. Neuroprotection from NMDA excitotoxic lesion by Cu/Zn superoxide dismutase gene delivery to the postnatal rat brain by a modular protein vector[J]. BMC Neurosci, 2006, 7: 35.
|
[54] |
Muscoli C, Mollace V, Wheatley J, et al. Superoxide-mediated nitration of spinal manganese superoxide dismutase: a novel pathway in N-methyl-D-aspartate-mediated hyperalgesia[J]. Pain, 2004, 111(1-2): 96-103.
|
[55] |
Yoon KD, Kang SN, Bae JY, et al. Enhanced antioxidant and protective activities on retinal ganglion cells of carotenoids-overexpressing transgenic carrot[J]. Curr Drug Targets, 2013, 14(9): 999-1005.
|
[56] |
Dykens JA. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+ and Na+: implications for neurodegeneration[J]. J Neurochem, 1994, 63(2): 584-591.
|
[57] |
Yang J, Khong PL, Wang Y, et al. Manganese-enhanced MRI detection of neurodegeneration in neonatal hypoxic-ischemic cerebral injury[J]. Magn Reson Med, 2008, 59(6): 1329-1339.
|
[58] |
Holley AK, Dhar SK, Xu Y, et al. Manganese superoxide dismutase: beyond life and death[J]. Amino Acids, 2012, 42(1): 139-158.
|
[59] |
Dugan LL, Sensi SL, Canzoniero LM, et al. Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate[J]. J Neurosci, 1995, 15(10): 6377-6388.
|
[60] |
Reynolds IJ, Hastings TG. Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation[J]. J Neurosci, 1995, 15(5 Pt 1): 3318-3327.
|
[61] |
He Y, Cui J, Lee JC, et al. Prolonged exposure of cortical neurons to oligomeric amyloid-beta impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (-)-epigallocatechin-3-gallate[J]. ASN Neuro, 2011, 3(1): e00050.
|
[62] |
Astori S, Lüthi A. Synaptic plasticity at intrathalamic connections via CaV3. 3 T-type Ca2+ channels and GluN2B-containing NMDA receptors[J]. J Neurosci, 2013, 33(2): 624-630.
|
[63] |
Kouvaros S, Kotzadimitriou D, Papatheodoropoulos C. Hippocampal sharp waves and ripples: Effects of aging and modulation by NMDA receptors and L-type Ca 2+ channels[J]. Neuroscience, 2015, 298: 26-41.
|
[64] |
Jiang X, Knox R, Pathipati P, et al. Developmental localization of NMDA receptors, Src and MAP kinases in mouse brain[J]. Neurosci Lett, 2011, 503(3): 215-219.
|
[65] |
Lewis-Tuffin LJ, Feathers R, Hari P, et al. Src family kinases differentially influence glioma growth and motility[J]. Molecular oncology, 2015, 9(9): 1783-1798.
|
[66] |
Chu PH, Tsygankov D, Berginski ME, et al. Engineered kinase activation reveals unique morphodynamic phenotypes and associated trafficking for Src family isoforms[J]. Proc Natl Acad Sci USA, 2014, 111(34): 12420-12425.
|
[67] |
Liu Y, Yan JZ, Gu YH, et al. Depolarization induces NR2A tyrosine phosphorylation and neuronal apoptosis[J]. Can J Neurol Sci, 2011, 38(6): 880-886.
|
[68] |
Park Y, Luo T, Zhang F, et al. Downregulation of Src-kinase and glutamate-receptor phosphorylation after traumatic brain injury[J]. J Cereb Blood Flow Metab, 2013, 33(10): 1642-1649.
|
[69] |
Zhang F, Li C, Wang R, et al. Activation of GABA receptors attenuates neuronal apoptosis through inhibiting the tyrosine phosphorylation of NR2A by Src after cerebral ischemia and reperfusion[J]. Neuroscience, 2007, 150(4): 938-949.
|
[70] |
Meissirel C, Ruiz de Almodovar C, Knevels E, et al. VEGF modulates NMDA receptors activity in cerebellar granule cells through Src-family kinases before synapse formation[J]. Proc Natl Acad Sci USA, 2011, 108(33): 13782-13787.
|
[71] |
Ruan GX, Kazlauskas A. Axl is essential for VEGF-A-dependent activation of PI3K/Akt[J]. EMBO J, 2012, 31(7): 1692-1703.
|