切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2025, Vol. 11 ›› Issue (03) : 192 -196. doi: 10.3877/cma.j.issn.2095-9141.2025.03.009

综述

脑室出血继发脑积水相关发病机制及治疗研究进展
刘硕1, 吉文玉1, 秦虎2, 汪永新2,()   
  1. 1830000 乌鲁木齐,新疆医科大学第一附属医院小儿神经外科
    2830000 乌鲁木齐,新疆医科大学第一附属医院神经外科中心
  • 收稿日期:2024-10-12 出版日期:2025-06-15
  • 通信作者: 汪永新

Research progress on the pathogenesis and treatment of hydrocephalus secondary to intraventricular hemorrhage

Shuo Liu1, Wenyu Ji1, Hu Qin2, Yongxin Wang2,()   

  1. 1Department of Pediatric Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
    2Neurosurgery Center of The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
  • Received:2024-10-12 Published:2025-06-15
  • Corresponding author: Yongxin Wang
  • Supported by:
    Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01D70); Wu Jieping Medical Foundation(320.6750.2023-07-2)
引用本文:

刘硕, 吉文玉, 秦虎, 汪永新. 脑室出血继发脑积水相关发病机制及治疗研究进展[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(03): 192-196.

Shuo Liu, Wenyu Ji, Hu Qin, Yongxin Wang. Research progress on the pathogenesis and treatment of hydrocephalus secondary to intraventricular hemorrhage[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2025, 11(03): 192-196.

脑室出血(IVH)是早产儿和成人神经系统疾病的常见并发症。血性脑脊液不仅可诱发炎症反应,导致脑组织受损,还可进一步演变为出血后继发脑积水(PHH)。PHH一旦形成,常需要行脑室-腹腔分流术,但手术具有分流管堵塞、移位及感染等风险。目前,临床与基础研究已揭示IVH-PHH的病理生理机制,并从分子生物学角度探索其潜在干预方案。本文主要围绕IVH-PHH的相关发病机制及治疗进展作一综述,旨在为该疾病的药物治疗及相关靶点的选择提供新的视角和思路。

Intraventricular hemorrhage (IVH) is a prevalent complication associated with neurological disorders in both premature infants and adults. The presence of bloody cerebrospinal fluid not only induces inflammation and damage to brain tissue but may also lead to the development of post-hemorrhagic hydrocephalus (PHH) in some patients. Once PHH is formed, ventriculoperitoneal shunt surgery is often required, but this surgical intervention carries inherent risks, including blockage, displacement, and infection of the shunt tubes. Currently, clinical and basic research have revealed the pathophysiological mechanisms of IVH-PHH, and explored its potential intervention strategies from a molecular biology perspective. This article mainly reviews the pathogenesis and treatment progress of IVH-PHH, aiming to provide new perspectives and ideas for drug therapy and target selection of this disease.

图1 IVH-PHH五大关键发病机制示意图IVH:脑室出血;NKCCC1:钠钾氯协同转运蛋白-1;PHH:继发脑积水
Fig.1 Schematic illustration of the five key pathogenic mechanisms in IVH-PHH
[1]
Holste KG, Xia F, Ye F, et al. Mechanisms of neuroinflammation in hydrocephalus after intraventricular hemorrhage: a review[J]. Fluids Barriers CNS, 2022, 19(1): 28. DOI: 10.1186/s12987-022-00324-0.
[2]
Murphy BP, Inder TE, Rooks V, et al. Posthaemorrhagic ventricular dilatation in the premature infant: natural history and predictors of outcome[J]. Arch Dis Child Fetal Neonatal Ed, 2002, 87(1): F37-F41. DOI: 10.1136/fn.87.1.f37.
[3]
Zhang N, Zhang D, Sun J, et al. Contribution of tumor characteristics and surgery-related factors to symptomatic hydrocephalus after posterior fossa tumor resection: a single-institution experience[J]. J Neurosurg Pediatr, 2023, 31(2): 99-108. DOI: 10.3171/2022.10.Peds22281.
[4]
Chen Z, Zhou M, Wen H, et al. Predictive factors for persistent postoperative hydrocephalus in children undergoing surgical resection of periventricular tumors[J]. Front Neurol, 2023, 14: 1136840. DOI: 10.3389/fneur.2023.1136840.
[5]
Guo ZY, Zhong ZA, Peng P, et al. A scoring system categorizing risk factors to evaluate the need for ventriculoperitoneal shunt in pediatric patients after brain tumor resection[J]. Front Oncol, 2023, 13: 1248553. DOI: 10.3389/fonc.2023.1248553.
[6]
Jabbarli R, Reinhard M, Roelz R, et al. The predictors and clinical impact of intraventricular hemorrhage in patients with aneurysmal subarachnoid hemorrhage[J]. Int J Stroke, 2016, 11(1): 68-76. DOI: 10.1177/1747493015607518.
[7]
Darkwah Oppong M, Gembruch O, Herten A, et al. Intraventricular hemorrhage caused by subarachnoid hemorrhage: does the severity matter?[J]. World Neurosurg, 2018, 111: e693-e702. DOI: 10.1016/j.wneu.2017.12.148.
[8]
Klebe D, McBride D, Krafft PR, et al. Posthemorrhagic hydrocephalus development after germinal matrix hemorrhage: established mechanisms and proposed pathways[J]. J Neurosci Res, 2020, 98(1): 105-120. DOI: 10.1002/jnr.24394.
[9]
Lolansen SD, Rostgaard N, Barbuskaite D, et al. Posthemorrhagic hydrocephalus associates with elevated inflammation and CSF hypersecretion via activation of choroidal transporters[J]. Fluids Barriers CNS, 2022, 19(1): 62. DOI: 10.1186/s12987-022-00360-w.
[10]
Perlman JM. Periventricular-intraventricular hemorrhage in the premature infant-a historical perspective[J]. Semin Perinatol, 2022, 46(5): 151591. DOI: 10.1016/j.semperi.2022.151591.
[11]
Hunt RJ, Nagaraja TN, Knight R, et al. Deuterium MRI for CSF studies in normal and hydrocephalic rats[J]. Neurosurgery, 2024, 70(Supplement_1): 46-47. DOI: 10.1227/neu.0000000000002809_185.
[12]
Kelley DH. Brain cerebrospinal fluid flow[J]. Phys Rev Fluids, 2021, 6(7): 070501. DOI: 10.1103/physrevfluids.6.070501.
[13]
Wilson CD, Safavi-Abbasi S, Sun H, et al. Meta-analysis and systematic review of risk factors for shunt dependency after aneurysmal subarachnoid hemorrhage[J]. J Neurosurg, 2017, 126(2): 586-595. DOI: 10.3171/2015.11.Jns152094.
[14]
Czorlich P, Ricklefs F, Reitz M, et al. Impact of intraventricular hemorrhage measured by Graeb and LeRoux score on case fatality risk and chronic hydrocephalus in aneurysmal subarachnoid hemorrhage[J]. Acta Neurochir (Wien), 2015, 157(3): 409-415. DOI: 10.1007/s00701-014-2334-z.
[15]
Rasmussen MK, Mestre H, Nedergaard M. Fluid transport in the brain[J]. Physiol Rev, 2022, 102(2): 1025-1151. DOI: 10.1152/physrev.00031.2020.
[16]
Hladky SB, Barrand MA. The glymphatic hypothesis: the theory and the evidence[J]. Fluids Barriers CNS, 2022, 19(1): 9. DOI: 10.1186/s12987-021-00282-z.
[17]
Ladrón-de-Guevara A, Shang JK, Nedergaard M, et al. Perivascular pumping in the mouse brain: improved boundary conditions reconcile theory, simulation, and experiment[J]. J Theor Biol, 2022, 542: 111103. DOI: 10.1016/j.jtbi.2022.111103.
[18]
Tithof J, Boster KAS, Bork PAR, et al. A network model of glymphatic flow under different experimentally-motivated parametric scenarios[J]. iScience, 2022, 25(5): 104258. DOI: 10.1016/j.isci.2022.104258.
[19]
Du T, Mestre H, Kress BT, et al. Cerebrospinal fluid is a significant fluid source for anoxic cerebral oedema[J]. Brain, 2022, 145(2): 787-797. DOI: 10.1093/brain/awab293.
[20]
Haldrup M, Rasmussen M, Mohamad N, et al. Intraventricular lavage vs external ventricular drainage for intraventricular hemorrhage: a randomized clinical trial[J]. JAMA Netw Open, 2023, 6(10): e2335247. DOI: 10.1001/jamanetworkopen.2023.35247.
[21]
廖长品,李忠华,李廷阳,等.机器人引导脑室分区穿刺引流术治疗重型脑室内出血研究[J].中华神经医学杂志, 2023, 22(8): 786-793. DOI: 10.3760/cma.j.cn115354-20230411-00225.
[22]
Garavaglia J, Hardigan T, Turner R, et al. Continuous intrathecal medication delivery with the IRRA flow catheter: pearls and early experience[J]. Oper Neurosurg, 2024, 26(3): 293-300. DOI: 10.1227/ons.0000000000000940.
[23]
刁正文,徐愈畅,张杰,等. β-七叶皂苷钠联合甘油果糖治疗脑出血的临床效果分析[J].中华神经创伤外科电子杂志, 2023, 9(1): 32-37. DOI: 10.3877/cma.j.issn.2095-9141.2023.01.006.
[24]
Feng Z, Tan Q, Tang J, et al. Intraventricular administration of urokinase as a novel therapeutic approach for communicating hydrocephalus[J]. Transl Res, 2017, 180: 77-90.e72. DOI: 10.1016/j.trsl.2016.08.004.
[25]
Haldrup M, Miscov R, Mohamad N, et al. Treatment of intraventricular hemorrhage with external ventricular drainage and fibrinolysis: a comprehensive systematic review and meta-analysis of complications and outcome[J]. World Neurosurg, 2023, 174: 183-196.e186. DOI: 10.1016/j.wneu.2023.01.021.
[26]
Hanley DF, Lane K, McBee N, et al. Thrombolytic removal of intraventricular haemorrhage in treatment of severe stroke: results of the randomised, multicentre, multiregion, placebo-controlled CLEAR Ⅲ trial[J]. Lancet, 2017, 389(10069): 603-611. DOI: 10.1016/s0140-6736(16)32410-2.
[27]
Carpenter AB, Lara-Reyna J, Hardigan T, et al. Use of emerging technologies to enhance the treatment paradigm for spontaneous intraventricular hemorrhage[J]. Neurosurg Rev, 2022, 45(1): 317-328. DOI: 10.1007/s10143-021-01616-z.
[28]
Gilhus NE, Deuschl G. Neuroinflammation-a common thread in neurological disorders[J]. Nat Rev Neurol, 2019, 15(8): 429-430. DOI: 10.1038/s41582-019-0227-8.
[29]
Karimy JK, Zhang J, Kurland DB, et al. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus[J]. Nat Med, 2017, 23(8): 997-1003. DOI: 10.1038/nm.4361.
[30]
Wang J, Liu R, Hasan MN, et al. Role of SPAK-NKCC1 signaling cascade in the choroid plexus blood-CSF barrier damage after stroke[J]. J Neuroinflammation, 2022, 19(1): 91. DOI: 10.1186/s12974-022-02456-4.
[31]
Chaudhry SR, Shafique S, Sajjad S, et al. Janus faced HMGB1 and post-aneurysmal subarachnoid hemorrhage (aSAH) inflammation [J]. Int J Mol Sci, 2022, 23(19): 11216. DOI: 10.3390/ijms231911216.
[32]
Cao Y, Liu C, Li G, et al. Metformin alleviates delayed hydrocephalus after intraventricular hemorrhage by inhibiting inflammation and fibrosis[J]. Transl Stroke Res, 2023, 14(3): 364-382. DOI: 10.1007/s12975-022-01026-3.
[33]
Khan OH, Enno TL, Del Bigio MR. Brain damage in neonatal rats following kaolin induction of hydrocephalus[J]. Exp Neurol, 2006, 200(2): 311-320. DOI: 10.1016/j.expneurol.2006.02.113.
[34]
Garrett MC, Otten ML, Starke RM, et al. Synergistic neuroprotective effects of C3a and C5a receptor blockade following intracerebral hemorrhage[J]. Brain Res, 2009, 1298171-177. DOI: 10.1016/j.brainres.2009.04.047.
[35]
Tang J, Jila S, Luo T, et al. C3/C3aR inhibition alleviates GMH-IVH-induced hydrocephalus by preventing microglia-astrocyte interactions in neonatal rats[J]. Neuropharmacology, 2022, 205: 108927. DOI: 10.1016/j.neuropharm.2021.108927.
[36]
Strahle JM, Garton T, Bazzi AA, et al. Role of hemoglobin and iron in hydrocephalus after neonatal intraventricular hemorrhage[J]. Neurosurgery, 2014, 75(6): 696-706. DOI: 10.1227/neu.0000000000000524.
[37]
Strahle JM, Mahaney KB, Morales DM, et al. Longitudinal CSF iron pathway proteins in posthemorrhagic hydrocephalus: associations with ventricle size and neurodevelopmental outcomes[J]. Ann Neurol, 2021, 90(2): 217-226. DOI: 10.1002/ana.26133.
[38]
Wan Y, Fu X, Zhang T, et al. Choroid plexus immune cell response in murine hydrocephalus induced by intraventricular hemorrhage[J]. Fluids Barriers CNS, 2024, 21(1): 37. DOI: 10.1186/s12987-024-00538-4.
[39]
Tan X, Chen J, Keep RF, et al. Prx2 (peroxiredoxin 2) as a cause of hydrocephalus after intraventricular hemorrhage[J]. Stroke, 2020, 51(5): 1578-1586. DOI: 10.1161/strokeaha.119.028672.
[40]
Bian C, Wan Y, Koduri S, et al. Iron-induced hydrocephalus: The role of choroid plexus stromal macrophages[J]. Transl Stroke Res, 2023, 14(2): 238-249. DOI: 10.1007/s12975-022-01031-6.
[41]
Chen T, Tan X, Xia F, et al. Hydrocephalus induced by intraventricular peroxiredoxin-2: the role of macrophages in the choroid plexus[J]. Biomolecules, 2021, 11(5): 654. DOI: 10.3390/biom11050654.
[42]
Gu C, Hao X, Li J, et al. Effects of minocycline on epiplexus macrophage activation, choroid plexus injury and hydrocephalus development in spontaneous hypertensive rats[J]. J Cereb Blood Flow Metab, 2019, 39(10): 1936-1948. DOI: 10.1177/0271678x19836117.
[43]
Toft-Bertelsen TL, Barbuskaite D, Heerfordt EK, et al. Lysophosphatidic acid as a CSF lipid in posthemorrhagic hydrocephalus that drives CSF accumulation via TRPV4-induced hyperactivation of NKCC1[J]. Fluids Barriers CNS, 2022, 19(1): 69. DOI: 10.1186/s12987-022-00361-9.
[44]
Li Y, Nan D, Liu R, et al. Aquaporin 4 mediates the effect of iron overload on hydrocephalus after intraventricular hemorrhage[J]. Neurocrit Care, 2024, 40(1): 225-236. DOI: 10.1007/s12028-023-01746-w.
[45]
Yung YC, Mutoh T, Lin ME, et al. Lysophosphatidic acid signaling may initiate fetal hydrocephalus[J]. Sci Transl Med, 2011, 3(99): 99ra87. DOI: 10.1126/scitranslmed.3002095.
[46]
Lummis NC, Sánchez-Pavón P, Kennedy G, et al. LPA1/3 overactivation induces neonatal posthemorrhagic hydrocephalus through ependymal loss and ciliary dysfunction[J]. Sci Adv, 2019, 5(10): eaax2011. DOI: 10.1126/sciadv.aax2011.
[47]
Preston D, Simpson S, Halm D, et al. Activation of TRPV4 stimulates transepithelial ion flux in a porcine choroid plexus cell line[J]. Am J Physiol Cell Physiol, 2018, 315(3): C357-C366. DOI: 10.1152/ajpcell.00312.2017.
[48]
Simpson S, Preston D, Schwerk C, et al. Cytokine and inflammatory mediator effects on TRPV4 function in choroid plexus epithelial cells[J]. Am J Physiol Cell Physiol, 2019, 317(5): C881-C893. DOI: 10.1152/ajpcell.00205.2019.
[49]
Ross ME. Unlocking the genetic complexity of congenital hydrocephalus[J]. Nat Med, 2020, 26(11): 1682-1683. DOI: 10.1038/s41591-020-1120-0.
[50]
Luyt K, Jary S, Lea C, et al. Ten-year follow-up of a randomised trial of drainage, irrigation and fibrinolytic therapy (DRIFT) in infants with post-haemorrhagic ventricular dilatation[J]. Health Technol Assess, 2019, 23(4): 1-116. DOI: 10.3310/hta23040.
[51]
Etus V, Kahilogullari G, Karabagli H, et al. Early endoscopic ventricular irrigation for the treatment of neonatal posthemorrhagic hydrocephalus: a feasible treatment option or not? A multicenter study[J]. Turk Neurosurg, 2018, 28(1): 137-141. DOI: 10.5137/1019-5149.Jtn.18677-16.0.
[52]
Parenrengi MA, Ranuh I, Suryaningtyas W. Is ventricular lavage a novel treatment of neonatal posthemorrhagic hydrocephalus? A meta analysis[J]. Childs Nerv Syst, 2023, 39(4): 929-935. DOI: 10.1007/s00381-022-05790-3.
[53]
Dvalishvili A, Khinikadze M, Gegia G, et al. Neuroendoscopic lavage versus traditional surgical methods for the early management of posthemorrhagic hydrocephalus in neonates[J]. Childs Nerv Syst, 2022, 38(10): 1897-1902. DOI: 10.1007/s00381-022-05606-4.
[1] 邓吟咏, 钟洁, 蒋理立, 杨婕. 结直肠肿瘤手术后并发症的预测与预防:基于临床研究的最新进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 579-583.
[2] 杨春燕, 周晓苹. 机器人辅助技术在腹腔镜结直肠癌根治术中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 584-588.
[3] 喻星豪, 黄娜, 刘罡. 肺癌的靶向与免疫联合治疗的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 330-333.
[4] 李继业, 张军, 吴明星, 宋伟, 邸飞. 腹腔镜治疗婴幼儿脑室腹腔分流术后镰状韧带囊肿[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(02): 121-124.
[5] 兰永, 刘晶, 杨志琦, 吴浪, 沙小春, 李明皓. 肠道菌群在胰腺炎发生发展中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 481-486.
[6] 段颖洁, 杜军霞, 丁潇楠, 任琴琴, 陈飞, 宋晨雯, 田明威, 张冬, 朱晗玉. 热应激导致肾损伤的发病机制和防治进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 97-103.
[7] 李洪黎, 张妍春. 神经营养因子对糖尿病视网膜病变神经血管单元损伤保护的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(03): 176-182.
[8] 陈丽丽, 陈笑语, 戴琦, 吴双庆, 付庆东. 睑板腺功能障碍发病机制的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(02): 124-128.
[9] 吴东阳, 赵玉龙, 文安国, 李俊之, 纪鑫, 赵明光. 重型颅脑损伤患者术后血钠水平变化规律对继发性脑积水的预测价值[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(01): 32-39.
[10] 周振宇, 杨利君, 薛伟, 彭亮. 推拿治疗肠易激综合征的研究进展[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(02): 185-190.
[11] 奚培培, 周加军. 慢性肾脏病相关性瘙痒症的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 216-220.
[12] 黄秋慧, 梁志坚. 人类免疫缺陷病毒感染患者并发脑出血的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(03): 255-259.
[13] 钱锦宏, 吴建东, 唐晓宇, 邓朋, 丁志良, 马冕. 3D 打印技术辅助神经内镜治疗幕上高血压脑出血破入脑室的临床效果[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 126-132.
[14] 马一茁, 胡叶文. 脑卒中患者营养风险筛查与评估工具的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(01): 54-57.
[15] 游洪, 乔杉, 张宇. 脑卒中患者居家延续护理模式的研究新进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(01): 63-67.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?