切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2025, Vol. 11 ›› Issue (03) : 144 -153. doi: 10.3877/cma.j.issn.2095-9141.2025.03.002

基础研究

TSPO对脑缺血再灌注损伤及自噬的影响
阿布都热合曼·阿卜拉, 玉苏甫·马合木提, 苏日青, 卡合尔曼·卡德尔, 买买提力·艾沙, 成晓江()   
  1. 830000 乌鲁木齐,新疆医科大学附属第一医院神经外科
  • 收稿日期:2024-10-29 出版日期:2025-06-15
  • 通信作者: 成晓江

Effects of TSPO on injury and autophagy in cerebral ischemia-reperfusion model

Abula Abudureheman, Mahemuti Yusufu, Riqing Su, Kadeer Kaheerman, Aisha Maimaitili, Xiaojiang Cheng()   

  1. Department of Neurosurgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
  • Received:2024-10-29 Published:2025-06-15
  • Corresponding author: Xiaojiang Cheng
  • Supported by:
    National Natural Science Foundation of China(81860223)
引用本文:

阿布都热合曼·阿卜拉, 玉苏甫·马合木提, 苏日青, 卡合尔曼·卡德尔, 买买提力·艾沙, 成晓江. TSPO对脑缺血再灌注损伤及自噬的影响[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(03): 144-153.

Abula Abudureheman, Mahemuti Yusufu, Riqing Su, Kadeer Kaheerman, Aisha Maimaitili, Xiaojiang Cheng. Effects of TSPO on injury and autophagy in cerebral ischemia-reperfusion model[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2025, 11(03): 144-153.

目的

探讨脑缺血再灌注(IR)损伤中转位蛋白(TSPO)的作用及与自噬-溶酶体途径相关作用机制。

方法

48只雄性SD成年大鼠按照随机数字表法分为Sham组、IR组、IR+PK11195组及IR+氯喹(CQ)组,每组12只。Sham组为手术对照组,IR组采用大脑中动脉阻塞法建立大鼠IR损伤模型,IR+PK11195组在IR前进行PK11195处理,IR+CQ组在IR前进行CQ处理。采用Longa分制法评估IR后24 h的神经功能;TTC染色观察脑梗死面积;HE染色观察脑组织变形和坏死情况;TUNEL染色观察细胞凋亡情况;免疫组织化学法检测CD86和CD206;酶联免疫吸附测定(ELISA)试剂盒检测白介素(IL)-6、IL-10、肿瘤坏死因子-α(TNF-α)在血清中的含量;Western blot实验检测TSPO、Beclin 1、LC3B、p62、LAMP1、Cathepsin B及Cathepsin D的蛋白表达水平。

结果

IR+PK11195组的Longa评分低于IR组和IR+CQ组,差异均有统计学意义(P<0.05)。TTC染色结果显示,IR+PK11195组和IR+CQ组的脑梗死面积均小于IR组,差异均有统计学意义(P<0.05)。HE染色结果显示,与IR组比较,IR+PK11195组脑组织神经元细胞肿胀及变性、坏死程度稍减轻,IR+CQ组脑组织排列紊乱,神经元细胞肿胀及变性、坏死程度加重,间质炎细胞浸润增多。TUNEL染色结果显示,IR+PK11195组的凋亡率较IR组明显下降,差异有统计学意义(P<0.05),IR+CQ组的凋亡率较IR组稍有升高,但差异无统计学意义(P>0.05)。免疫组织化学染色结果显示,4组大鼠脑组织的CD86、CD206蛋白表达比较,差异均无统计学意义(P>0.05)。ELISA结果显示,IR组IL-6、TNF-α较Sham组升高,IL-10降低;与IR组比较,IR+PK11195组IL-6、TNF-α降低,而IR+CQ组升高;IR+PK11195组中IL-10升高,而IR+CQ组降低,差异均有统计学意义(P<0.05)。Western blot实验结果显示,与IR组比较,IR+PK11195组TSPO、LC3B、Beclin 1等自噬小体相关蛋白表达水平降低,而IR+CQ组升高;p62、Cathepsin D、Cathepsin B、LAMP1等溶酶体相关蛋白表达升高,而IR+CQ组降低,差异均有统计学意义(P<0.05)。

结论

TSPO在大鼠IR模型中表达升高并加重损伤,损伤机制可能与小胶质细胞介导的炎症反应和自噬-溶酶体途径障碍相关。

Objective

To explore the role of translocation protein (TSPO) in cerebral ischemia-reperfusion (IR) injury and its mechanism related to autophagy-lysosome pathway.

Methods

Forty-eight male rats were randomly divided into Sham group, IR group, IR+PK11195 group, and IR+chloroquine (CQ) group, with 12 rats in each group. The IR group used the middle cerebral artery occlusion method to establish a rat model of IR injury. The IR+PK11195 group was treated with PK11195 before IR, the IR+CQ group was treated with CQ before IR, and the Sham group was used as the surgical control group. Neurological function was assessed with Longa scoring 24 h after IR. Infarct areas were visualized through TTC staining, tissue deformation and necrosis observed via HE staining, apoptosis detected using TUNEL staining, CD86 and CD206 identified by immunohistochemistry, interleukin (IL)-6, IL-10, and tumor necrosis factor α (TNF-α) measured in ELISA assays, and protein expression levels of TSPO, Beclin 1, LC3B, p62, LAMP1, Cathepsin B, and Cathepsin D analyzed by Western blot.

Results

The Longa score of the IR+PK11195 group was lower than that of the IR group, while the Longa score of the IR+CQ group was higher than that of the IR+PK11195 group, and the differences were statistically significant (P<0.05). TTC staining results showed that the infarct area of the IR+PK11195 group and the IR+CQ group were smaller than that of the IR group, and the differences were statistically significant (P<0.05). HE staining results showed that compared with the IR group, the IR+PK11195 group had slightly reduced swelling, degeneration, and necrosis of neuronal cells in brain tissue, while the IR+CQ group had disordered brain tissue arrangement, increased swelling, degeneration, and necrosis of neuronal cells, and increased infiltration of interstitial inflammatory cells. TUNEL staining results showed that the apoptosis rate of the IR+PK11195 group was significantly lower than that of the IR group, and the difference was statistically significant (P<0.05); The apoptosis rate of the IR+CQ group was slightly higher than that of the IR group, but the difference was not statistically significant (P>0.05). The immunohistochemical staining results showed that there was no statistically significant difference in the expression of CD86 and CD206 proteins in the brain tissues of the four groups of rats (P>0.05). ELISA results showed that IL-6 and TNF-α in the IR group were higher than those in the Sham group, while IL-10 was lower; The levels of IL-6 and TNF-α in the IR+PK11195 group were lower than those in the IR group, while they were higher in the IR+CQ group; The anti-inflammatory factor IL-10 increased in the IR+PK11195 group compared to the IR group, while it decreased in the IR+CQ group, and the differences were statistically significant (P<0.05). Western blot experiment results showed that the expression of autophagosome related proteins such as TSPO, LC3B, Beclin 1, etc. was reduced in the IR+PK11195 group compared to the IR group, while it was increased in the IR+CQ group compared to the IR group; The expression of lysosome related proteins such as p62, Cathepsin D, Cathepsin B, LAMP1 increased, while the IR+CQ group decreased compared to the IR group, and the differences were statistically significant (P<0.05).

Conclusions

In the rat cerebral IR model, TSPO expression increased and aggravated the injury, and the injury mechanism may be related to microglia-mediated inflammatory response and autophagy-lysosome pathway disorder.

图1 4组大鼠缺血再灌注损伤后脑组织TTC染色结果
Fig.1 TTC staining results of brain tissue after ischemia-reperfusion injury in 4 groups of rats
表1 4组大鼠IR损伤后Longa评分及梗死面积占比比较(±s
Tab.1 Comparison of Longa score and infarct size ratio after IR injury in 4 groups of rats (Mean±SD)
图2 4组大鼠脑组织坏死的HE染色结果(×200)A:Sham组;B:IR组;C:IR+PK11195组;D:IR+CQ组
Fig.2 HE staining results of brain tissue necrosis in 4 groups of rats (×200)
图3 4组大鼠脑细胞凋亡的TUNEL染色结果(×200)A:Sham组;B:IR组;C:IR+PK11195组;D:IR+CQ组
Fig.3 TUNEL staining results of apoptosis of brain cells in 4 groups of rats (×200)
表2 4组大鼠细胞凋亡率比较(±s
Tab.2 Comparison of apoptosis rates in 4 groups of rats (Mean±SD)
图4 4组大鼠脑组织中小胶质细胞标志因子的免疫组织化学染色结果(×200)A:CD206;B:CD86
Fig.4 Immunohistochemical staining results of microglia marker factors in brain tissue of 4 groups of rats (×200)
表3 4组大鼠脑组织中CD206与CD86蛋白表达水平比较(±s
Tab.3 Comparison of CD206 and CD86 protein expression levels in brain tissues of 4 groups of rats (Mean±SD)
表4 4组大鼠脑组织中炎症因子含量比较[pg/mL,MP25P75)]
Tab.4 Comparison of inflammatory factor content in brain tissue of 4 groups of rats [pg/mL, M(P25P75)]
图5 4组大鼠脑组织中自噬溶酶体途径相关蛋白的表达水平A:Western blot电泳条带图;B:TSPO蛋白相对表达量;C:LC3B蛋白相对表达量;D:p62蛋白相对表达量;E:Beclin 1蛋白相对表达量;F:Cathepsin D蛋白相对表达量;G:LAMP1蛋白相对表达量;H:Cathepsin B蛋白相对表达量;与Sham组比较,aP<0.05;与IR组比较,bP<0.05;与IR+PK11195组比较,cP<0.05;TSPO:转位蛋白;IR:缺血再灌注;CQ:氯喹
Fig.5 Expression levels of autophagy-lysosomal pathway-related proteins in in brain tissues of 4 groups of rats
[1]
Betlazar C, Middleton RJ, Banati R, et al. The translocator protein (TSPO) in mitochondrial bioenergetics and immune processes[J]. Cells, 2020, 9(2): 512. DOI: 10.3390/cells9020512.
[2]
Liang R, Tang Q, Song W, et al. Electroacupuncture preconditioning reduces oxidative stress in the acute phase of cerebral ischemia-reperfusion in rats by regulating iron metabolism pathways [J]. Evid Based Complement Alternat Med, 2021, 2021: 3056963. DOI: 10.1155/2021/3056963.
[3]
Sun X, Liu H, Sun Z, et al. Acupuncture protects against cerebral ischemia-reperfusion injury via suppressing endoplasmic reticulum stress-mediated autophagy and apoptosis[J]. Mol Med, 2020, 26(1): 105. DOI: 10.1186/s10020-020-00236-5.
[4]
Enzmann G, Kargaran S, Engelhardt B. Ischemia-reperfusion injury in stroke: Impact of the brain barriers and brain immune privilege on neutrophil function[J]. Ther Adv Neurol Disord, 2018, 11: 1756286418794184. DOI: 10.1177/1756286418794184.
[5]
Venkat P, Chopp M, Chen J. Blood-brain barrier disruption, vascular impairment, and ischemia/reperfusion damage in diabetic stroke[J]. J Am Heart Assoc, 2017, 6(6): e005819. DOI: 10.1161/jaha.117.005819.
[6]
Gatliff J, Campanella M. TSPO: kaleidoscopic 18-kDa amid biochemical pharmacology, control and targeting of mitochondria[J]. Biochem J, 2016, 473(2): 107-121. DOI: 10.1042/bj20150899.
[7]
Scholz R, Caramoy A, Bhuckory MB, et al. Targeting translocator protein (18 kDa) (TSPO) dampens pro-inflammatory microglia reactivity in the retina and protects from degeneration[J]. J Neuroinflammation, 2015, 12: 201. DOI: 10.1186/s12974-015-0422-5.
[8]
Gatliff J, Campanella M. TSPO is a REDOX regulator of cell mitophagy[J]. Biochem Soc Trans, 2015, 43(4): 543-552. DOI: 10.1042/bst20150037.
[9]
Jiang P, Guo Y, Dang R, et al. Salvianolic acid B protects against lipopolysaccharide-induced behavioral deficits and neuroinflammatory response: involvement of autophagy and NLRP3 inflammasome[J]. J Neuroinflammation, 2017, 14(1): 239. DOI: 10.1186/s12974-017-1013-4.
[10]
Seneviratne MS, Faccenda D, De Biase V, et al. PK11195 inhibits mitophagy targeting the F1Fo-ATPsynthase in Bcl-2 knock-down cells[J]. Curr Mol Med, 2012, 12(4): 476-482. DOI: 10.2174/156652412800163406.
[11]
Benninger DH, Georgiadis D, Kremer C, et al. Mechanism of ischemic infarct in spontaneous carotid dissection[J]. Stroke, 2004, 35(2): 482-485. DOI: 10.1161/01.Str.0000109766.27393.52.
[12]
Hu X, Leak RK, Shi Y, et al. Microglial and macrophage polarization-new prospects for brain repair[J]. Nat Rev Neurol, 2015, 11(1): 56-64. DOI: 10.1038/nrneurol.2014.207.
[13]
Zhang Y, Yu J, Liu J, et al. Effects of stem cell-derived exosomes on neuronal apoptosis and inflammatory cytokines in rats with cerebral ischemia-reperfusion injury via PI3K/AKT pathway-mediated mitochondrial apoptosis[J]. Immunopharmacol Immunotoxicol, 2021, 43(6): 731-740. DOI: 10.1080/08923973.2021.1976794.
[14]
叶涛,朱路文,唐强,等.电针预处理对大鼠脑缺血再灌注损伤后脑梗死体积及血清TNF-α、IL-10含量的影响[J].中国针灸, 2017, 37(10): 1093-1098. DOI: 10.13703/j.0255-2930.2017.10.017.
[15]
Pannell M, Economopoulos V, Wilson TC, et al. Imaging of translocator protein upregulation is selective for pro-inflammatory polarized astrocytes and microglia[J]. Glia, 2020, 68(2): 280-297. DOI: 10.1002/glia.23716.
[16]
Lv Q, Xu D, Ma J, et al. Uric acid drives intestinal barrier dysfunction through TSPO-mediated NLRP3 inflammasome activation[J]. Inflamm Res, 2021, 70(1): 127-137. DOI: 10.1007/s00011-020-01409-y.
[17]
Horiguchi Y, Ohta N, Yamamoto S, et al. Midazolam suppresses the lipopolysaccharide-stimulated immune responses of human macrophages via translocator protein signaling[J]. Int Immunopharmacol, 2019, 66: 373-382. DOI: 10.1016/j.intimp.2018.11.050.
[18]
刘玉莲,巫芳华,杨开令,等.消退素D1通过甲酰肽受体2调控小胶质细胞极化改善大鼠脑缺血/再灌注损伤[J].中国药理学通报, 2021, 37(6): 791-797. DOI: 10.3969/j.issn.1001-1978.2021.06.010.
[19]
He S, Liu R, Li B, et al. Propagermanium, a CCR2 inhibitor, attenuates cerebral ischemia/reperfusion injury through inhibiting inflammatory response induced by microglia[J]. Neurochem Int, 2019, 125: 99-110. DOI: 10.1016/j.neuint.2019.02.010.
[20]
Liang S, Chen Z, Li H, et al. Neuroprotective effect of umbelliferone against cerebral ischemia/reperfusion induced neurological deficits: in-vivo and in-silico studies[J]. J Biomol Struct Dyn, 2021, 39(13): 4715-4725. DOI: 10.1080/07391102.2020.1780153.
[21]
Yang S, Wang H, Yang Y, et al. Baicalein administered in the subacute phase ameliorates ischemia-reperfusion-induced brain injury by reducing neuroinflammation and neuronal damage[J]. Biomed Pharmacother, 2019, 117(11): 109102. DOI: 10.1016/j.biopha.2019.109102.
[22]
Fekadu J, Rami A. Beclin-1 deficiency alters autophagosome formation, lysosome biogenesis and enhances neuronal vulnerability of HT22 hippocampal cells[J]. Mol Neurobiol, 2016, 53(8): 5500-5509. DOI: 10.1007/s12035-015-9453-2.
[23]
Zhang B, Deng F, Zhou C, et al. ClC-3 induction protects against cerebral ischemia/reperfusion injury through promoting Beclin1/Vps34-mediated autophagy[J]. Hum Cell, 2020, 33(4): 1046-1055. DOI: 10.1007/s13577-020-00406-x.
[24]
Saikh KU, Dankmeyer JL, Zeng X, et al. An increase in intracellular p62/NBR1 and persistence of Burkholderia mallei and B. pseudomallei in infected mice linked to autophagy deficiency[J]. Immun Inflamm Dis, 2019, 7(1): 7-21. DOI: 10.1002/iid3.239.
[25]
黄亚光,陶薇,王金凤,等.针刺调控自噬保护脑缺血再灌注损伤的研究进展[J].针刺研究, 2019, 44(6): 459-464. DOI: 10.13702/j.1000-0607.180275.
[26]
Sun Y, Zhang T, Zhang Y, et al. Ischemic postconditioning alleviates cerebral ischemia-reperfusion injury through activating autophagy during early reperfusion in rats[J]. Neurochem Res, 2018, 43(9): 1826-1840. DOI: 10.1007/s11064-018-2599-3.
[27]
Pan J, Li X, Guo F, et al. Ginkgetin attenuates cerebral ischemia-reperfusion induced autophagy and cell death via modulation of the NF-κB/p53 signaling pathway[J]. Biosci Rep, 2019, 39(9): BSR20191452. DOI: 10.1042/BSR20191452.
[28]
Li M, Ren H, Sheth KN, et al. A TSPO ligand attenuates brain injury after intracerebral hemorrhage[J]. FASEB J, 2017, 31(8): 3278-3287. DOI: 10.1096/fj.201601377RR.
[29]
Ma L, Zhang H, Liu N, et al. TSPO ligand PK11195 alleviates neuroinflammation and beta-amyloid generation induced by systemic LPS administration[J]. Brain Res Bull, 2016, 121: 192-200. DOI: 10.1016/j.brainresbull.2016.02.001.
[30]
Christensen A, Pike CJ. TSPO ligand PK11195 improves Alzheimer-related outcomes in aged female 3xTg-AD mice[J]. Neurosci Lett, 2018, 683: 7-12. DOI: 10.1016/j.neulet.2018.06.029.
[31]
Monga S, Denora N, Laquintana V, et al. The protective effect of the TSPO ligands 2, 4-Di-Cl-MGV-1, CB86, and CB204 against LPS-induced M1 pro-inflammatory activation of microglia[J]. Brain Behav Immun Health, 2020, 5: 100083. DOI: 10.1016/j.bbih.2020.100083.
[32]
Lan N, Liu Y, Juan Z, et al. The TSPO-specific ligand PK11195 protects against LPS-induced cognitive dysfunction by inhibiting cellular autophagy[J]. Front Pharmacol, 2020, 11: 615543. DOI: 10.3389/fphar.2020.615543.
[33]
何昕雅,张强,段静诗,等.溶酶体相关膜蛋白LAMP1与肿瘤相关性的研究进展[J].生命科学, 2020, 32(10): 1074-1080. DOI: 10.13376/j.cbls/2020129.
[34]
周大旺,张晨禹,黎博,等.转录因子EB通过激活自噬及溶酶体功能改善缺血性卒中小鼠神经功能[J].中国病理生理杂志, 2021, 37(7): 1178-1186. DOI: 10.3969/j.issn.1000-4718.2021.07.004.
[35]
Wang H, Chen S, Zhang Y, et al. Electroacupuncture ameliorates neuronal injury by Pink1/Parkin-mediated mitophagy clearance in cerebral ischemia-reperfusion [J]. Nitric Oxide, 2019, 91(10): 23-34. DOI: 10.1016/j.niox.2019.07.004
[36]
肖学进,李丹丹,梁佳,等.氯喹对大鼠脑缺血再灌注自噬相关蛋白的影响[J].中国临床解剖学杂志, 2017, 35(4): 402-408. DOI: 10.13418/j.issn.1001-165x.2017.04.010.
[37]
Lan R, Zhang Y, Wu T, et al. Xiao-Xu-Ming decoction reduced mitophagy activation and improved mitochondrial function in cerebral ischemia and reperfusion injury[J]. Behav Neurol, 2018, 2018: 4147502. DOI: 10.1155/2018/4147502.
[38]
Cheng XT, Xie YX, Zhou B, et al. Revisiting LAMP1 as a marker for degradative autophagy-lysosomal organelles in the nervous system[J]. Autophagy, 2018, 14(8): 1472-1474. DOI: 10.1080/15548627.2018.1482147.
[1] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[2] 张胜行, 张晔智, 陈立典. NRG-1/ErbB4通路与脑缺血再灌注损伤细胞凋亡关系及电针干预作用[J/OL]. 中华细胞与干细胞杂志(电子版), 2018, 08(06): 379-383.
[3] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[4] 张艺, 任秀君, 郭孟玮, 赵雅芳, 李一凡, 李佳阳, 任晓暄, 邬继红, 卢海洋. 电针预处理对脑缺血再灌注大鼠行为学及外周血内皮祖细胞的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 71-77.
[5] 关明函, 薛志强. 右美托咪定改善大鼠脑缺血再灌注后脑损伤的研究[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(05): 270-276.
[6] 杨梦琦, 马慧芬, 訾阳, 王楠, 杜冰玉, 常万鹏, 于少泓. 马黛茶对脑血管疾病防治作用的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 235-240.
[7] 康晓宇, 刘丽旭. 心肺复苏后全脑缺血再灌注损伤的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2021, 11(02): 116-120.
[8] 葛蓓蓓, 宋勇. 硫酸羟氯喹联合白芍总苷肽治疗口腔糜烂型扁平苔藓的临床应用[J/OL]. 中华临床医师杂志(电子版), 2021, 15(01): 32-36.
[9] 刘俊彬, 张晓婷, 郭镜培, 刘佳妮, 于本帅, 张可, 周斌. 熊果酸通过抑制NLRP3介导的小胶质细胞焦亡减轻脑缺血再灌注损伤的研究[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 221-227.
[10] 江哲宇, 蒋天鹏, 周石, 王黎洲. 微小RNA在脑缺血再灌注损伤中的研究现状与进展[J/OL]. 中华介入放射学电子杂志, 2022, 10(01): 75-82.
[11] 庞淇丹, 崔玮, 唐涛, 姜德春, 李深. 检测脑缺血再灌注损伤的探针及技术进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 149-154.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?