切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2025, Vol. 11 ›› Issue (02) : 123 -126. doi: 10.3877/cma.j.issn.2095-9141.2025.02.008

颅脑与神经功能修复

梭曼神经毒性作用及对抗措施的研究进展
高若妍1, 付浩1, 孙洪涛1, 冯康妮1,()   
  1. 1. 300162 天津,中国人民武装警察部队特色医学中心神经创伤及修复研究所
  • 收稿日期:2024-11-24 出版日期:2025-04-15
  • 通信作者: 冯康妮

Research progress on the neurotoxic effects of soman and countermeasures

Ruoyan Gao1, Hao Fu1, Hongtao Sun1, Kangni Feng1,()   

  1. 1. Institute of Neurotrauma and Repair, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin 300162, China
  • Received:2024-11-24 Published:2025-04-15
  • Corresponding author: Kangni Feng
引用本文:

高若妍, 付浩, 孙洪涛, 冯康妮. 梭曼神经毒性作用及对抗措施的研究进展[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(02): 123-126.

Ruoyan Gao, Hao Fu, Hongtao Sun, Kangni Feng. Research progress on the neurotoxic effects of soman and countermeasures[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2025, 11(02): 123-126.

梭曼作为一种有机磷神经毒剂,通过不可逆地抑制乙酰胆碱酯酶活性,使乙酰胆碱在神经突触和肌肉接头处蓄积,从而引发持续性癫痫状态、呼吸衰竭等致命症状。尽管目前已有标准治疗方案,但其疗效高度依赖早期干预,延迟治疗往往无法阻止神经损伤和死亡。即使患者在中毒后20 min内及时用药,若未能有效控制癫痫活动,仍可造成多脑区广泛神经病理损害,显著增加死亡率。因此,进一步探索新的联合用药策略,拓宽治疗时间窗,改善延迟救治的预后,对于梭曼中毒的紧急救治具有重要意义。本文主要对梭曼发挥神经毒性作用的机制及最新的治疗药物进展进行综述,旨在为进一步开发梭曼中毒的治疗新策略提供参考。

As an organophosphorus nerve agent, soman exerts its neurotoxic effects by irreversibly inhibiting acetylcholinesterase activity. This inhibition leads to the accumulation of acetylcholine at neural synapses and neuromuscular junctions, triggering persistent epileptic states and potentially fatal symptoms such as respiratory failure. Despite the existence of standard treatment protocols, their efficacy heavily relies on early intervention, as delayed treatment often fails to prevent neurological damage and death. Even with timely administration of medication, uncontrolled epileptic activity within 20 min can cause widespread neuropathological damage across multiple brain regions, significantly increasing the mortality rate. Further exploration of novel combination therapy strategies, expansion of the therapeutic time window, and improvement of outcomes for delayed treatment are crucial for emergency response to soman poisoning. This article provides a comprehensive review of the neurotoxic mechanisms of soman and recent advancements in therapeutic drugs, aiming to offer a reference for the further development of new treatment strategies for soman poisoning.

[1]
Newmark J. Therapy for acute nerve agent poisoning: an update[J]. Neurol Clin Pract, 2019, 9(4): 337-342. DOI: 10.1212/cpj.0000000000000641.
[2]
Matar H, Price SC, Chilcott RP. Further studies of the efficacy of military, commercial and novel skin decontaminants against the chemical warfare agents sulphur mustard, soman and VX[J]. Toxicol In Vitro, 2019, 54: 263-268. DOI: 10.1016/j.tiv.2018.10.008.
[3]
Myhrer T, Mariussen E, Aas P. Development of neuropathology following soman poisoning and medical countermeasures[J].Neurotoxicology, 2018, 65: 144-165. DOI: 10.1016/j.neuro.2018.02.009.
[4]
Dorandeu F, Barbier L, Dhote F, et al. Ketamine combinations for the field treatment of soman-induced self-sustaining status epilepticus. Review of current data and perspectives[J]. Chem Biol Interact, 2013, 203(1): 154-159. DOI: 10.1016/j.cbi.2012.09.013.
[5]
van Helden HP, Joosen MJ, Philippens IH. Non-enzymatic pretreatment of nerve agent (soman) poisoning: a brief state-of-theart review[J]. Toxicol Lett, 2011, 206(1): 35-40. DOI: 10.1016/j.toxlet.2011.04.021.
[6]
Sirin GS, Zhou Y, Lior-Hoffmann L, et al. Aging mechanism of soman inhibited acetylcholinesterase[J]. J Phys Chem B, 2012,116(40): 12199-12207. DOI: 10.1021/jp307790v.
[7]
Drexler B, Seeger T, Worek F, et al. Impact of soman and acetylcholine on the effects of propofol in cultured cortical networks[J]. Toxicol Lett, 2020, 322: 98-103. DOI: 10.1016/j.toxlet.2020.01.012.
[8]
靳倩, 崔雅岚, 时梦, 等. 梭曼急性暴露对大鼠肝脏线粒体的损伤作用研究[J]. 军事医学, 2023, 47(4): 268-272, 292. DOI:10.7644/j.issn.1674-9960.2023.04.006.Jin Q, Cui YL, Shi M, et al. Damage of acute soman exposure to liver mitochondria in rats[J]. Mil Med Sci, 2023, 47(4): 268-272,292. DOI: 10.7644/j.issn.1674-9960.2023.04.006.
[9]
Carpentier P, Pouyatos B, Dorandeu F, et al. Prediction of somaninduced cerebral damage by distortion product otoacoustic emissions[J]. Toxicology, 2010, 277(1-3): 38-48. DOI: 10.1016/j.tox.2010.08.014.
[10]
Stojiljković MP, Škrbić R, Jokanović M, et al. Prophylactic potential of memantine against soman poisoning in rats[J].Toxicology, 2019, 416: 62-74. DOI: 10.1016/j.tox.2019.01.012.
[11]
Wang Y, Wei Y, Oguntayo S, et al. A combination of [+] and [-]-huperzine A improves protection against soman toxicity compared to [+]-huperzine A in guinea pigs[J]. Chem Biol Interact, 2013, 203(1): 120-124. DOI: 10.1016/j.cbi.2012.10.016.
[12]
Lane M, Carter D, Pescrille JD, et al. Oral pretreatment with galantamine effectively mitigates the acute toxicity of a supralethal dose of soman in cynomolgus monkeys posttreated with conventional antidotes[J]. J Pharmacol Exp Ther, 2020, 375(1): 115-126. DOI:10.1124/jpet.120.265843.
[13]
Yang G, Cui Y, Zong X, et al. Improved protective effects and pharmacokinetics of huperzine a derivative H14 in soman poisoning: a comparative study with huperzine a in rats[J]. Rapid Commun Mass Spectrom, 2025, 39(9): e9995. DOI: 10.1002/rcm.9995.
[14]
Turner SR, Timperley CM, Bird M, et al. Structure-activity studies of bispyridinium antinicotinics to select candidates to treat soman intoxication as part of a combined therapy[J]. PLoS One, 2025, 20(2): e0318508. DOI: 10.1371/journal.pone.0318508.
[15]
Myers TM. Human plasma-derived butyrylcholinesterase is behaviorally safe and effective in cynomolgus macaques (Macaca fascicularis) challenged with soman[J]. Chem Biol Interact, 2019,308: 170-178. DOI: 10.1016/j.cbi.2019.05.021.
[16]
Lee JY, Kim C, Lee YH. Simultaneous time-concentration analysis of soman and VX adducts to butyrylcholinesterase and albumin by LC-MS-MS[J]. J Anal Toxicol, 2018, 42(5): 293-299.DOI: 10.1093/jat/bkx066.
[17]
Saxena A, Myers TM, Sipos ML. Conjugates of human serum butyrylcholinesterase and nerve agents are behaviorally safe in rhesus macaques[J]. Chem Biol Interact, 2021, 344: 109499. DOI:10.1016/j.cbi.2021.109499.
[18]
Andrew PM, MacMahon JA, Liu X, et al. Allopregnanolone as an adjunct therapy to midazolam is more effective than midazolam alone in suppressing soman-induced status epilepticus in male rats[J]. CNS Neurosci Ther, 2025, 31(3): e70215. DOI: 10.1111/cns.70215.
[19]
Figueiredo TH, Aroniadou-Anderjaska V, Apland JP, et al.Delayed tezampanel and caramiphen treatment but not midazolam protects against long-term neuropathology after soman exposure[J]. Exp Biol Med (Maywood), 2023, 248(7): 612-623. DOI: 10.1177/15353702231171911.
[20]
Keith ZM, Munoz C, Acon-Chen C, et al. Seizure suppression and neuroprotection in soman-exposed rats following delayed intramuscular treatment of adenosine A(1) receptor agonist as an adjunct to standard medical treatment[J]. Toxicol Appl Pharmacol,2024, 488: 116970. DOI: 10.1016/j.taap.2024.116970.
[21]
Munoz C, Acon-Chen C, Keith ZM, et al. Hypothermia as potential therapeutic approach to attenuating soman-induced seizure, neuropathology, and mortality with an adenosine A(1)receptor agonist and body cooling[J]. Neuropharmacology, 2024,253: 109966. DOI: 10.1016/j.neuropharm.2024.109966.
[1] 杨莹, 刘艳, 王央丹. 新生儿结节性硬化症相关性癫痫1例并文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 464-472.
[2] 邓瑶, 喻韬, 陈小璐, 罗蓉. 热性感染相关性癫痫综合征患儿的临床及随访分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2022, 18(06): 645-651.
[3] 罗序峰, 廖建湘, 罗智强, 段婧, 李永利, 徐建芳, 陈黎. Na+通道阻滞剂治疗SCN2A基因变异所致早发型癫痫性脑病并文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 585-590.
[4] 宁俊杰, 乔莉娜. 非典型良性家族性新生儿癫痫患儿的诊治及文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2022, 18(03): 307-314.
[5] 廖怡, 罗蓉. 儿童脑型X-连锁肾上腺脑白质营养不良分析并文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 205-212.
[6] 杨骐源, 张琼, 刘亚琪, 廖桉然, 邹静. 进行性半侧颜面萎缩伴癫痫1例[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 89-94.
[7] 张小凤, 孙晓琴, 黄军, 冀涵页, 杨辉, 侯智, 张春青. 标准前颞叶切除术治疗药物难治性癫痫[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 189-192.
[8] 孙晓琴, 刘仕勇, 石先俊, 安宁, 杨辉, 张春青. 环岛叶大脑半球离断术治疗药物难治性癫痫[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 126-128.
[9] 王利, 张磊, 费晓炜, 伊西才, 王彦刚. 迷走神经电刺激术中充分剥离迷走神经鞘膜对术后癫痫发作影响的研究[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(03): 160-164.
[10] 吴新高, 李伟, 马俊, 刘红, 黄平. 癫痫患者定量脑电图功率谱相关参数与认知功能损伤的相关性研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 304-308.
[11] 郝梦薇, 陈珍, 魏涛, 张慧. 成年癫痫患者血清miR-132-3p表达及其与耐药的关系分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2022, 12(06): 344-348.
[12] 丁浩然, 关宇光, 王雄飞, 赵萌, 王静, 王梦阳, 滕鹏飞, 栾国明. 立体定向脑电图引导下多电极立体适形射频热凝毁损治疗药物难治性岛叶癫痫的疗效分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2022, 12(04): 227-233.
[13] 王媛媛, 冯兆才, 路岩莉. 头部经络与癫痫的关系研究进展[J/OL]. 中华针灸电子杂志, 2022, 11(02): 55-57.
[14] 徐胡根, 王家, 张福池, 周云山, 史向松. 拉考沙胺致二度Ⅰ型窦房传导阻滞一例[J/OL]. 中华心脏与心律电子杂志, 2025, 13(01): 54-56.
[15] 李承玉, 徐连萍, 王圣松, 王群. 不同抗癫痫发作药物单药治疗在卒中后癫痫中的保留率和有效性分析[J/OL]. 中华脑血管病杂志(电子版), 2023, 17(04): 325-330.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?