切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2024, Vol. 10 ›› Issue (04) : 220 -225. doi: 10.3877/cma.j.issn.2095-9141.2024.04.005

临床研究

CT扫描结合三维可视化技术在腰椎管狭窄症后路显微通道手术前定位的应用
池彬1, 魏梁锋1,(), 王守森1   
  1. 1.350025 福州,联勤保障部队第九〇〇医院神经外科
  • 收稿日期:2024-01-26 出版日期:2024-08-15
  • 通信作者: 魏梁锋
  • 基金资助:
    福建省自然科学基金(2021J011276)

CT scanning combined with three-dimensional visualization technology in the positioning of microchannel microchannel in lumbar spinal stenosis pathway

Bin Chi1, Liangfeng Wei1,(), Shousen Wang1   

  1. 1.Department of Neurosurgery,the 900th Hospital of Joint Logistics Force,Fuzhou 350025,China
  • Received:2024-01-26 Published:2024-08-15
  • Corresponding author: Liangfeng Wei
引用本文:

池彬, 魏梁锋, 王守森. CT扫描结合三维可视化技术在腰椎管狭窄症后路显微通道手术前定位的应用[J]. 中华神经创伤外科电子杂志, 2024, 10(04): 220-225.

Bin Chi, Liangfeng Wei, Shousen Wang. CT scanning combined with three-dimensional visualization technology in the positioning of microchannel microchannel in lumbar spinal stenosis pathway[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2024, 10(04): 220-225.

目的

探讨CT 扫描结合三维可视化技术在显微通道下腰椎后路术前定位的应用价值。

方法

收集联勤保障部队第九〇〇医院神经外科自2018 年6 月至2021 年3 月收治的在显微通道下行腰椎后入路手术治疗的113 例椎管狭窄患者的临床资料,按照随机数字表法分为试验组(58例)和对照组(55例)。试验组患者术前行CT断层扫描,利用Mimics三维可视化技术进行定位;对照组患者行X 线正位扫描,以腰部放置的金属回形针进行术前定位。比较2 组患者术前定位准确率、术中透视次数、术中通道调整次数及手术时间,采用疼痛视觉模拟评分(VAS)与腰椎Oswestry 功能障碍指数(ODI)评分评估患者术前1 d 及术后1 周、3 个月、1 年的疼痛程度、功能障碍改善情况。

结果

试验组患者的术中透视次数、术中通道调整次数、手术时间均低于对照组,差异有统计学意义(P<0.05);2 组患者的定位准确率比较,差异无统计学意义(P>0.05)。试验组患者术后1 周的VAS、ODI 评分均低于对照组,差异有统计学意义(P<0.05);2 组患者术后3 个月及1 年的VAS、ODI 评分比较,差异无统计学意义(P>0.05)。2 组患者术后VAS、ODI 评分均随时间的延长逐渐降低,组内各时间点比较差异均有统计学意义(P<0.05)。

结论

在显微通道下腰椎后路术前定位中,CT 扫描结合Mimics 三维可视化技术较传统X 线定位技术更有优势,是一种较为理想的术前定位方法。

Objective

To explore the application value of CT scanning combined with threedimensional visualization technology in preoperative positioning for microchannel lumbar posterior approach surgery.

Methods

Clinical data of 113 patients with spinal stenosis who underwent microchannel lumbar posterior approach surgery from June 2018 to March 2021 in Neurosurgery Department of the 900th Hospital of Joint Logistics Force were collected. Patients were randomly divided into experimental group (58 cases) and control group (55 cases) using a random number table. The experimental group underwent preoperative CT scanning with preoperative positioning using Mimics threedimensional visualization technology.The control group underwent X-ray anterior-posterior scanning with preoperative positioning using metal paper clips placed in the waist. The accuracy of preoperative positioning,the number of intraoperative fluoroscopies,the number of intraoperative channel adjustments,and the duration of surgery were compared between the two groups.Pain visual analogue score (VAS)and Oswestry dysfunction index (ODI) scores were used to assess the improvement in pain and functional disability 1 d before surgery and 1 week,3 months,and 1 year after surgery.

Results

The intraoperative fluoroscopy frequency, intraoperative channel adjustment frequency, and surgery duration of the experimental group were lower than those of the control group, and the difference was statistically significant (P<0.05); There was no statistically significant difference in the accuracy of positioning between the two groups (P>0.05). The VAS and ODI scores of the experimental group were lower than those of the control group 1 week after surgery, and the difference was statistically significant (P<0.05);There was no statistically significant difference in VAS and ODI scores between the two groups at 3 months and 1 year after surgery(P>0.05).The postoperative VAS and ODI scores of both groups gradually decreased with the prolongation of time, and the differences at each time point were statistically significant (P<0.05).

Conclusion

In preoperative positioning for microchannel lumbar posterior approach surgery, CT scanning combined with Mimics three-dimensional visualization technology has more advantages than traditional X-ray positioning technology and is considered as an ideal preoperative positioning method.

图1 试验组患者术前CT定位示意图 A:行CT 断层扫描,在计算机上获取患椎的轴位定位线数值(白线);B:在机器调节至相应位置,利用扫描的红线确定患椎水平面(红十字线)
Fig.1 Schematic diagram of preoperative CT localization in the experimental group
图2 试验组患者手术入径模拟示意图 A~C:CT 断层扫描后获得的冠状位(A)、轴位(B)、矢状位(C)导入软件,选择重建的区域;D~F:使用软件3D 重建功能,构建穿刺路径图(D)、角度(E)以及深度(F)
Fig.2 Schematic diagram of the surgical approach simulation in the experimental group
表1 2组患者一般资料比较
Tab.1 Comparison of general data between two groups
表2 2组患者手术参数比较
Tab.2 Comparison of surgical parameters between two groups
表3 2组患者术后各时间点VAS、ODI评分比较[分,M(P25,P75)]
Tab.3 Comparison of VAS and ODI scores between two groups at different postoperative time points [score,M(P25,P75)]
[1]
徐振涛,冉然,苏道庆.硬膜下型腰椎间盘突出症的显微手术治疗[J]. 中华神经创伤外科电子杂志, 2021, 7(2): 127-128.DOI:10.3877/cma.j.issn.2095-9141-2021-2-v1.Xu ZT, Ran R, Su DQ. Microsurgical treatment of intradural lumbar disc herniation[J]. Chin J Neurotrauma Surg (Electronic Edition),2021,7(2):127-128.DOI:10.3877/cma.j.issn.2095-9141-2021-2-v1.
[2]
杨新华,刘鹏,张良,等.显微镜辅助下经颈椎前路椎间盘切除融合术治疗脊髓型颈椎病的疗效分析[J].中华解剖与临床杂志, 2020, 25(5): 560 - 564. DOI: 10.3760/cma. j. cn101202 -20190905-00279.Yang XH,Liu P,Zhang L,et al.The clinical effect of microscopicassisted anterior cervical discectomy and fusion in the treatment of cervical spondylotic myelopathy[J]. Chin J Anat Clin, 2020, 25(5):560-564.DOI:10.3760/cma.j.cn101202-20190905-00279.
[3]
魏梁锋,陈业煌,薛亮,等.经皮通道下脊神经根显微减压术治疗神经根型颈椎病的临床研究[J]. 中华神经医学杂志, 2023,22(4):382-387.DOI:10.3760/cma.j.cn115354-20230111-00018.Wei LF,Chen YH,Xue L,et al.Treatment of cervical spondylotic radiculopathy with spinal nerve root decompression under microscope and percutaneous tubular retractor system[J]. Chin J Neuromed, 2023, 22(4): 382-387. DOI: 10.3760/cma.j.cn115354-20230111-00018.
[4]
刘晓东,李晋虎,陈毅,等.Hybrid手术治疗多节段脊髓型颈椎病的临床疗效[J]. 中华神经外科杂志, 2021, 37(10): 1002-1007.DOI:10.3760/cma.j.cn112050-20210705-00325.Liu XD, Li JH, Chen Y, et al. Clinical efficacy of hybrid surgery for multilevel cervical spondylotic myelopathy[J]. Chin J Neurosurg,2021,37(10):1002-1007.DOI:10.3760/cma.j.cn112050-20210705-00325.
[5]
Mody MG, Nourbakhsh A, Stahl DL, et al. The prevalence of wrong level surgery among spine surgeons[J]. Spine (Phila Pa 1976), 2008, 33(2): 194-198. DOI: 10.1097/BRS.0b013e3181604 3d1.
[6]
Devine J, Chutkan N, Norvell DC, et al. Avoiding wrong site surgery: a systematic review[J]. Spine (Phila Pa 1976), 2010, 35(9 Suppl):S28-S36.DOI:10.1097/BRS.0b013e3181d833ac.
[7]
Goodwin ML, Buchowski JM, Sciubba DM. Why X-rays? The importance of radiographs in spine surgery[J]. Spine J, 2022, 22(11):1759-1767.DOI:10.1016/j.spinee.2022.07.102.
[8]
Mongardi L, Visani J, Mantovani G, et al. Ct guided reference markers for spinal dorsal lesions: a safe and valuable tool impacting intraoperative localization time[J]. J Clin Neurosci,2021,84:97-101.DOI:10.1016/j.jocn.2020.11.039.
[9]
Slotty P Jr, Kröpil P, Klingenhöfer M, et al. Preoperative localization of spinal and peripheral pathologies for surgery by computed tomography-guided placement of a specialized needle system[J]. Neurosurgery, 2010, 66(4): 784-787. DOI: 10.1227/01.NEU.0000367450.79418.5B.
[10]
Pham MH, Osorio JA, Lehman RA. Navigated spinal robotics in minimally invasive spine surgery, with preoperative and intraoperative workflows: 2-dimensional operative video[J]. Oper Neurosurg (Hagerstown), 2020, 19(4): E422. DOI: 10.1093/ons/opaa095.
[11]
Ringel F, Stüer C, Reinke A, et al. Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation[J]. Spine (Phila Pa 1976), 2012, 37(8): E496-E501.DOI:10.1097/BRS.0b013e31824b7767.
[12]
Iwai H, Inanami H, Koga H. Comparative study between fullendoscopic laminectomy and microendoscopic laminectomy for the treatment of lumbar spinal canal stenosis[J]. J Spine Surg,2020,6(2):E3-E11.DOI:10.21037/jss-20-620.
[13]
Klinger N, Yilmaz E, Halalmeh DR, et al. Reattachment of the multifidus tendon in lumbar surgery to decrease postoperative back pain: a technical note[J]. Cureus, 2019, 11(12): e6366. DOI:10.7759/cureus.6366.
[14]
Majeed SA, Vikraman CS, Mathew V, et al. Comparison of outcomes between conventional lumbar fenestration discectomy and minimally invasive lumbar discectomy:an observational study with a minimum 2-year follow-up[J]. J Orthop Surg Res, 2013, 8:34.DOI:10.1186/1749-799x-8-34.
[15]
吴易洋,王峰,宋子木,等.3D 打印个性化导板在颅内病变穿刺活组织检查术中的应用[J].中华神经外科杂志,2020,36(1):44-47.DOI:10.3760/cma.j.issn.1001-2346.2020.01.012.Wu YY, Wang F, Song ZM, et al. Application of 3D printed individualized guide plate in intracranial lesion biopsy[J]. Chin J Neurosurg, 2020, 36(1): 44-47. DOI: 10.3760/cma.j.issn.1001-2346.2020.01.012.
[16]
Nie JZ, Weber MW, Revelt NJ, et al. Comparison of using intraoperative computed tomography-based 3-dimensional navigation and fluoroscopy in anterior cervical diskectomy and fusion for cervical spondylosis[J]. World Neurosurg, 2022, 161: e740-e747.DOI:10.1016/j.wneu.2022.02.089.
[17]
吴家昌,李修往,方国芳,等.3D 打印人工椎体在脊柱肿瘤手术中的设计及初步应用[J]. 中华创伤骨科杂志, 2020, 22(10):855-861.DOI:10.3760/cma.j.cn115530-20200819-00531.Wu JC, Li XW, Fang GF, et al. Design and preliminary application of 3D-printed vertebral bodies in spinal tumor surgery[J]. Chin J Orthop Trauma, 2020, 22(10): 855-861. DOI: 10.3760/cma.j.cn115530-20200819-00531.
[18]
Kim DH, Kim HM, Park JS, et al. Virtual reality haptic simulator for endoscopic sinus and skull base surgeries[J]. J Craniofac Surg,2020,31(6):1811-1814.DOI:10.1097/scs.0000000000006395.
[19]
Zhao A, Fopma S, Agrawal R. Demystifying the CT radiation dose sheet[J]. Radiographics, 2022, 42(4): 1239-1250. DOI: 10.1148/rg.210107.
[1] 田发兰, 陈见中, 扎西卓玛, 喻定刚. 三维可视化技术在复杂泡型肝包虫病治疗中的临床应用[J]. 中华普通外科学文献(电子版), 2023, 17(04): 257-261.
[2] 徐耀博, 吴斌全. 三维可视化技术结合术中超声在可切除肝癌腹腔镜手术的应用[J]. 中华普通外科学文献(电子版), 2022, 16(04): 273-277.
[3] 齐普良, 田青山, 马丽娜, 李彩霞, 阿吉德. ICG示踪联合三维可视化技术指导下改良右半肝切除术治疗肝细胞癌的回顾性研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 162-166.
[4] 许洋洋, 李志华, 李学松. 数字化技术在上尿路修复中的应用[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(04): 289-292.
[5] 陈秀山, 张婷婷, 杨栓盈, 高娜. 低剂量CT扫描在肺部同轴穿刺活检中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 587-588.
[6] 胥凯凯, 李铁铮, 刘春全, 崔永. 肺小结节精准定位日间手术流程及临床疗效分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 230-232.
[7] 陈志坚, 俞建达, 池小斌, 吕立志, 陈永标. 三维可视化技术在腹腔镜肝巨大肿瘤切除中的应用价值[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 302-307.
[8] 孟令展, 李虎, 俞鹏, 于燕宾, 曹李, 翟伟, 高远, 邵艳玲, 严锦, 朱震宇. ICG荧光染色在肝癌腹腔镜解剖性肝切除术中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 557-561.
[9] 高旭东, 王小明, 陈江明, 奚士航, 潘璇. 基于三维可视化技术的脾门区脾动脉三维分型[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 434-439.
[10] 杨剑. 三维可视化联合3D腹腔镜超巨脾切除术[J]. 中华肝脏外科手术学电子杂志, 2020, 09(06): 0-0.
[11] 方驰华, 曾宁. 三维可视化、3D打印及VR在Ⅲb型肝门部胆管癌门静脉变异中的应用[J]. 中华肝脏外科手术学电子杂志, 2020, 09(06): 0-0.
[12] 王松叶, 易蕊, 段利达, 张震, 侯国峰, 张志强, 王振方, 刘凌华, 于强, 栗志利, 荆亚新, 代秋声, 徐如祥. "移动战伤单元"16排移动CT头部扫描试验报告[J]. 中华神经创伤外科电子杂志, 2020, 06(04): 214-218.
[13] 牛富业, 尹雪军, 孙倩倩, 闫小彬, 徐才国. CT扫描与静脉肾盂造影对肾结核诊断价值的Meta分析[J]. 中华消化病与影像杂志(电子版), 2020, 10(04): 158-161.
[14] 陈旭, 肖翼春, 项霞青. 肺部高频超声与CT扫描对儿童肺炎支原体肺炎的诊断效能对比研究[J]. 中华临床医师杂志(电子版), 2021, 15(12): 944-947.
[15] 李赞林, 曹强, 李义亮, 克力木·阿不都热依木. 三维可视化技术在食管裂孔疝外科教学中的应用[J]. 中华胃食管反流病电子杂志, 2024, 11(02): 100-103.
阅读次数
全文


摘要