切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2024, Vol. 10 ›› Issue (01) : 48 -54. doi: 10.3877/cma.j.issn.2095-9141.2024.01.008

综述

中枢神经系统AQP4的调节机制研究进展
程亚飞1, 郭航2,()   
  1. 1. 030001 太原,山西医科大学麻醉学院
    2. 100010 北京,解放军总医院第七医学中心麻醉科
  • 收稿日期:2023-02-02 出版日期:2024-02-15
  • 通信作者: 郭航

Research progress on the regulatory mechanism of AQP4 in central nervous system

Yafei Cheng1, Hang Guo2,()   

  1. 1. College of Anesthesiology, Shanxi Medical University, Taiyuan 030001, China
    2. Department of Anesthesiology, the 7th Medical Center, PLA General Hospital, Beijing 100010, China
  • Received:2023-02-02 Published:2024-02-15
  • Corresponding author: Hang Guo
  • Supported by:
    National Natural Science Foundation of China(82101427)
引用本文:

程亚飞, 郭航. 中枢神经系统AQP4的调节机制研究进展[J]. 中华神经创伤外科电子杂志, 2024, 10(01): 48-54.

Yafei Cheng, Hang Guo. Research progress on the regulatory mechanism of AQP4 in central nervous system[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2024, 10(01): 48-54.

水通道蛋白-4(AQP4)是哺乳动物中枢神经系统最主要的水通道,在脑微血管周围的星形胶质细胞足突密集表达,参与调节脑内水平衡、K+离子缓冲空间、神经胶质瘢痕形成、淋巴清除、神经元兴奋性、突触可塑性和行为等诸多生物学过程。目前研究发现,AQP4与缺血性脑损伤、癫痫、抑郁和阿尔兹海默病等中枢神经系统疾病有关,因此靶向调节AQP4有望成为中枢神经系统疾病的新型治疗策略。本文围绕AQP4的内源性调节方式和调节剂,以及AQP4的调控在中枢神经疾病中的最新进展进行综述,旨在为靶向调节AQP4的临床转化提供理论基础。

Aquaporin 4 (AQP4) is the main water channel in the mammalian central nervous system (CNS), around the astrocyte cell foot process dense expression, involved in regulating the brain water balance, K+ buffer space, glial scar formation, lymphatic clearance, neuronal excitability, synaptic plasticity and behavior, and many other biological processes. Current findings, AQP4 is associated with CNS diseases such as ischemic brain injury, epilepsy, depression and Alzheimer's disease, so targeted modulation of AQP4 is expected to be a novel therapeutic strategy for CNS diseases. This article reviews the endogenous regulation mode and regulators of AQP4 and the recent progress of AQP4 regulation in CNS disorders, aiming to provide a rationale for the clinical translation of targeted regulation of AQP4.

图1 AQP4的跨膜结构及NAP折叠结构A:跨膜结构;B:NAP折叠结构
Fig.1 Transmembrane structure and NAP folding structure of AQP4
表1 AQP4存在的磷酸化位点及其作用
Tab.1 Phosphorylation sites of AQP4 and their effects
[1]
Tait MJ, Saadoun S, Bell BA, et al. Water movements in the brain: role of aquaporins[J]. Trends Neurosci, 2008, 31(1): 37-43. DOI: 10.1016/j.tins.2007.11.003.
[2]
Nagelhus EA, Ottersen OP. Physiological roles of aquaporin-4 in brain[J]. Physiol Rev, 2013, 93(4): 1543-1562. DOI: 10.1152/physrev.00011.2013.
[3]
Gonen T, Walz T. The structure of aquaporins[J]. Q Rev Biophys, 2006, 39(4): 361-396. DOI: 10.1017/s0033583506004458.
[4]
Smith AJ, Jin BJ, Ratelade J, et al. Aggregation state determines the localization and function of M1- and M23-aquaporin-4 in astrocytes[J]. J Cell Biol, 2014, 204(4): 559-573. DOI: 10.1083/jcb.201308118.
[5]
Jorgačevski J, Zorec R, Potokar M. Insights into cell surface expression, supramolecular organization, and functions of aquaporin 4 isoforms in astrocytes[J]. Cells, 2020, 9(12): 2622. DOI: 10.3390/cells9122622.
[6]
De Bellis M, Pisani F, Mola MG, et al. Translational readthrough generates new astrocyte AQP4 isoforms that modulate supramolecular clustering, glial endfeet localization, and water transport[J]. Glia, 2017, 65(5): 790-803. DOI: 10.1002/glia.23126.
[7]
Pati R, Palazzo C, Valente O, et al. The readthrough isoform AQP4ex is constitutively phosphorylated in the perivascular astrocyte endfeet of human brain[J]. Biomolecules, 2022, 12(5): 633. DOI: 10.3390/biom12050633.
[8]
Tham DK, Joshi B, Moukhles H. Aquaporin-4 cell-surface expression and turnover are regulated by dystroglycan, dynamin, and the extracellular matrix in astrocytes[J]. PLoS One, 2016, 11(10): e0165439. DOI: 10.1371/journal.pone.0165439.
[9]
Manley GT, Fujimura M, Ma T, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke[J]. Nat Med, 2000, 6(2): 159-163. DOI: 10.1038/72256.
[10]
Abbott NJ, Pizzo ME, Preston JE, et al. The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic’ system?[J]. Acta Neuropathol, 2018, 135(3): 387-407. DOI: 10.1007/s00401-018-1812-4.
[11]
张爽,黄晓雪,闫露露,等.水通道蛋白4与阿尔茨海默病的关系研究进展[J].中华神经医学杂志, 2021, 20(4): 406-411. DOI: 10.3760/cma.j.cn115354-20200818-00667.
[12]
Banitalebi S, Skauli N, Geiseler S, et al. Disassembly and mislocalization of AQP4 in incipient scar formation after experimental stroke[J]. Int J Mol Sci, 2022, 23(3). DOI: 10.3390/ijms23031117.
[13]
Binder DK, Nagelhus EA, Ottersen OP. Aquaporin-4 and epilepsy[J]. Glia, 2012, 60(8): 1203-1214. DOI: 10.1002/glia.22317.
[14]
Genel O, Pariante CM, Borsini A. The role of aqp4 in the pathogenesis of depression, and possible related mechanisms[J]. Brain Behav Immun, 2021, 98: 366-377. DOI: 10.1016/j.bbi.2021.08.232.
[15]
Lv Y, Jing MY, Li PY, et al. Aquaporin-4 deletion attenuates opioid-induced addictive behaviours associated with dopamine levels in nucleus accumbens[J]. Neuropharmacology, 2022, 208: 108986. DOI: 10.1016/j.neuropharm.2022.108986.
[16]
Szu JI, Binder DK. The role of astrocytic aquaporin-4 in synaptic plasticity and learning and memory[J]. Front Integr Neurosci, 2016, 10: 8. DOI: 10.3389/fnint.2016.00008.
[17]
Wagner K, Unger L, Salman MM, et al. Signaling mechanisms and pharmacological modulators governing diverse aquaporin functions in human health and disease[J]. Int J Mol Sci, 2022, 23(3): 1388. DOI: 10.3390/ijms23031388.
[18]
Nesverova V, Törnroth-Horsefield S. Phosphorylation-dependent regulation of mammalian aquaporins[J]. Cells, 2019, 8(2): 82. DOI: 10.3390/cells8020082.
[19]
Assentoft M, Kaptan S, Fenton RA, et al. Phosphorylation of rat aquaporin-4 at Ser(111) is not required for channel gating[J]. Glia, 2013, 61(7): 1101-1112. DOI: 10.1002/glia.22498.
[20]
Assentoft M, Larsen BR, Olesen ETB, et al. AQP4 plasma membrane trafficking or channel gating is not significantly modulated by phosphorylation at COOH-terminal serine residues[J]. Am J Physiol Cell Physiol, 2014, 307(10), C957-C965. DOI: 10.1152/ajpcell.00182.2014.
[21]
Fazzina G, Amorini AM, Marmarou CR, et al. The protein kinase C activator phorbol myristate acetate decreases brain edema by aquaporin 4 downregulation after middle cerebral artery occlusion in the rat[J]. J Neurotrauma, 2010, 27(2): 453-461. DOI: 10.1089/neu.2008.0782.
[22]
Vandebroek A, Yasui M. Regulation of AQP4 in the central nervous system[J]. Int J Mol Sci, 2020, 21(5): 1603. DOI: 10.3390/ijms21051603.
[23]
Kitchen P, Day RE, Taylor LH, et al. Identification and molecular mechanisms of the rapid tonicity-induced relocalization of the aquaporin 4 channel[J]. J Biol Chem, 2015, 290(27): 16873-16881. DOI: 10.1074/jbc.M115.646034.
[24]
Ishida H, Vogel HJ, Conner AC, et al. Simultaneous binding of the N- and C-terminal cytoplasmic domains of aquaporin 4 to calmodulin[J]. Biochim Biophys Acta Biomembr, 2022, 1864(2): 183837. DOI: 10.1016/j.bbamem.2021.183837.
[25]
Kitchen P, Salman MM, Halsey AM, et al. Targeting aquaporin-4 subcellular localization to treat central nervous system edema[J]. Cell, 2020, 181(4): 784-799.e19. DOI: 10.1016/j.cell.2020.03.037.
[26]
Pati R, Palazzo C, Valente O, et al. The readthrough isoform AQP4ex is constitutively phosphorylated in the perivascular astrocyte endfeet of human brain[J]. Biomolecules, 2022, 12(5): 633. DOI: 10.3390/biom12050633.
[27]
Psani F, Simone L, Mola MG, et al. Regulation of aquaporin-4 expression in the central nervous system investigated using M23-AQP4 null mouse[J]. Glia, 2021, 69(9): 2235-2251. DOI: 10.1002/glia.24032.
[28]
Xiong A, Li J, Xiong R, et al. Inhibition of HIF-1α-AQP4 axis ameliorates brain edema and neurological functional deficits in a rat controlled cortical injury (CCI) model[J]. Sci Rep, 2022, 12(1): 2701. DOI: 10.1038/s41598-022-06773-9.
[29]
Costa LES, Clementino-Neto J, Mendes CB, et al. Evidence of aquaporin 4 regulation by thyroid hormone during mouse brain development and in cultured human glioblastoma multiforme cells[J]. Front Neurosci, 2019, 13: 317. DOI: 10.3389/fnins.2019.00317.
[30]
Zhang H, Wang Y, Lian L, et al. Glycine-Histidine-Lysine (GHK) alleviates astrocytes injury of intracerebral hemorrhage via the Akt/miR-146a-3p/AQP4 pathway[J]. Front Neurosci, 2020, 14: 576389. DOI: 10.3389/fnins.2020.576389.
[31]
Salman MM, Sheilabi MA, Bhattacharyya D, et al. Transcriptome analysis suggests a role for the differential expression of cerebral aquaporins and the MAPK signalling pathway in human temporal lobe epilepsy[J]. Eur J Neurosci, 2017, 46(5): 2121-2132. DOI: 10.1111/ejn.13652.
[32]
Liu Y, Ma Y, Du B, et al. Mesenchymal stem cells attenuated blood-brain barrier disruption via downregulation of aquaporin-4 expression in EAE mice[J]. Mol Neurobiol, 2020, 57(9): 3891-3901. DOI: 10.1007/s12035-020-01998-z32.
[33]
Lu H, Ai L, Zhang B. TNF-α induces AQP4 overexpression in astrocytes through the NF-κB pathway causing cellular edema and apoptosis[J]. Biosci Rep, 2022, 42(3): BSR20212224. DOI: 10.1042/BSR20212224.
[34]
Sun L, Li M, Ma X, et al. Inhibition of HMGB1 reduces rat spinal cord astrocytic swelling and AQP4 expression after oxygen-glucose deprivation and reoxygenation via TLR4 and NF-κB signaling in an IL-6-dependent manner[J]. J Neuroinflammation, 2017, 14(1): 231. DOI: 10.1186/s12974-017-1008-1.
[35]
Yuan M, Ge M, Yin J, et al. Isoflurane post-conditioning down-regulates expression of aquaporin 4 in rats with cerebral ischemia/reperfusion injury and is possibly related to bone morphogenetic protein 4/Smad1/5/8 signaling pathway[J]. Biomed Pharmacother, 2018, 97: 429-438. DOI: 10.1016/j.biopha.2017.10.082.
[36]
Gomes A, da Silva IV, Rodrigues CMP, et al. The emerging role of microRNAs in aquaporin regulation[J]. Front Chem, 2018, 6: 238. DOI: 10.3389/fchem.2018.00238.
[37]
Wang Y, Huang J, Ma Y, et al. MicroRNA-29b is a therapeutic target in cerebral ischemia associated with aquaporin 4[J]. J Cereb Blood Flow Metab, 2015, 35(12): 1977-1984. DOI: 10.1038/jcbfm.2015.156.
[38]
Zhong Y, Liang B, Hu M, et al. MicroRNA-29b-3p aggravates 1,2-dichloroethane-induced brain edema by targeting aquaporin 4 in Sprague-Dawley rats and CD-1 mice[J]. Toxicol Lett, 2020, 319: 160-167. DOI:10.1016/j.toxlet.2019.11.011.
[39]
Zheng Y, Pan C, Chen M, et al. miR-29a ameliorates ischemic injury of astrocytes in vitro by targeting the water channel protein aquaporin 4[J]. Oncol Rep, 2019, 41(3): 1707-1717. DOI: 10.3892/or.2019.6961.
[40]
Wang H, Zheng X, Jin J, et al. LncRNA MALAT1 silencing protects against cerebral ischemia-reperfusion injury through miR-145 to regulate AQP4[J]. J Biomed Sci, 2020, 27(1): 40. DOI: 10.1186/s12929-020-00635-0.
[41]
Sepramaniam S, Ying LK, Armugam A, et al. MicroRNA-130a represses transcriptional activity of aquaporin 4 M1 promoter[J]. J Biol Chem, 2012, 287(15): 12006-12015. DOI: 10.1074/jbc.M111.280701.
[42]
Zheng Y, Wang L, Chen M, et al. Upregulation of miR-130b protects against cerebral ischemic injury by targeting water channel protein aquaporin 4 (AQP4)[J]. Am J Transl Res, 2017, 9(7): 3452-3461.
[43]
de Bellis M, Cibelli A, Mola MG, et al. Orthogonal arrays of particle assembly are essential for normal aquaporin-4 expression level in the brain[J]. Glia, 2021, 69(2): 473-488. DOI: 10.1002/glia.23909.
[44]
Lisjak M, Potokar M, Rituper B, et al. AQP4e-based orthogonal arrays regulate rapid cell volume changes in astrocytes[J]. J Neurosci, 2017, 37(44): 10748-10756. DOI: 10.1523/JNEUROSCI.0776-17.2017.
[45]
Lisjak M, Potokar M, Zorec R, et al. Indirect role of AQP4b and AQP4d isoforms in dynamics of astrocyte volume and orthogonal arrays of particles[J]. Cells, 2020, 9(3): 735. DOI: 10.3390/cells9030735.
[46]
Palazzo C, Abbrescia P, Valente O, et al. Tissue distribution of the readthrough isoform of AQP4 reveals a dual role of AQP4ex limited to CNS[J]. Int J Mol Sci, 2020, 21(4): 1531. DOI: 10.3390/ijms21041531.
[47]
Valente O, Messina R, Ingravallo G, et al. Alteration of the translational readthrough isoform AQP4ex induces redistribution and downregulation of AQP4 in human glioblastoma[J]. Cell Mol Life Sci, 2022, 79(3): 140. DOI: 10.1007/s00018-021-04123-y.
[48]
Hoddevik EH, Rao SB, Zahl S, et al. Organisation of extracellular matrix proteins laminin and agrin in pericapillary basal laminae in mouse brain[J]. Brain Struct Funct, 2020, 225(2): 805-816. DOI: 10.1007/s00429-020-02036-3.
[49]
Noël G, Tham DKL, Guadagno E, et al. The laminin-induced phosphorylation of PKCδ regulates AQP4 distribution and water permeability in rat astrocytes[J]. Cell Mol Neurobiol, 2021, 41(8): 1743-1757. DOI: 10.1007/s10571-020-00944-w.
[50]
Katoozi S, Skauli N, Zahl S, et al. Uncoupling of the astrocyte syncytium differentially affects AQP4 isoforms[J]. Cells, 2020, 9(2): 382. DOI: 10.3390/cells9020382.
[51]
Xiang Y, Ma B, Li T, et al. Acetazolamide inhibits aquaporin-1 protein expression and angiogenesis[J]. Acta Pharmacol Sin, 2004, 25(6): 812-816.
[52]
Kamegawa A, Hiroaki Y, Tani K, et al. Two-dimensional crystal structure of aquaporin-4 bound to the inhibitor acetazolamide[J]. Microscopy (Oxf), 2016, 65(2): 177-184. DOI: 10.1093/jmicro/dfv368.
[53]
Hao JQ, He XY, Yang X, et al. Acetazolamide alleviate cerebral edema induced by ischemic stroke through inhibiting the expression of AQP4 mRNA[J]. Neurocrit Care, 2022, 36(1): 97-105. DOI: 10.1007/s12028-021-01261-w.
[54]
Li J, Jia Z, Xu W, et al. TGN-020 alleviates edema and inhibits astrocyte activation and glial scar formation after spinal cord compression injury in rats[J]. Life Sci, 2019, 222: 148-157. DOI: 10.1016/j.lfs.2019.03.007.
[55]
Farr GW, Hall CH, Farr SM, et al. Functionalized phenylbenzamides inhibit aquaporin-4 reducing cerebral edema and improving outcome in two models of CNS injury[J]. Neuroscience, 2019, 404: 484-498. DOI: 10.1016/j.neuroscience.2019.01.034.
[56]
Wallisch JS, Janesko-Feldman K, Alexander H, et al. The aquaporin-4 inhibitor AER-271 blocks acute cerebral edema and improves early outcome in a pediatric model of asphyxial cardiac arrest[J]. Pediatr Res, 2019, 85(4): 511-517. DOI: 10.1038/s41390-018-0215-5.
[57]
Verkman AS, Anderson MO, Papadopoulos MC. Aquaporins: important but elusive drug targets[J]. Nat Rev Drug Discov, 2014, 13(4): 259-277. DOI: 10.1038/nrd4226.
[58]
Verkman AS, Smith AJ, Phuan PW, et al. The aquaporin-4 water channel as a potential drug target in neurological disorders[J]. Expert Opin Ther Targets, 2017, 21(12): 1161-1170. DOI: 10.1080/14728222.2017.1398236.
[59]
Ximenes-da-Silva A. Metal ion toxins and brain aquaporin-4 expression: an overview[J] Front Neurosci, 2016, 10: 233. DOI: 10.3389/fnins.2016.00233.
[60]
Yukutake Y, Tsuji S, Hirano Y, et al. Mercury chloride decreases the water permeability of aquaporin-4-reconstituted proteoliposomes[J]. Biol Cell, 2008, 100(6): 355-363. DOI: 10.1042/BC20070132.
[61]
Yukutake Y, Hirano Y, Suematsu M, et al. Rapid and reversible inhibition of aquaporin-4 by zinc[J]. Biochemistry, 2009, 48(51): 12059-12061. DOI: 10.1021/bi901762y.
[62]
Gunnarson E, Axehult G, Baturina G, et al. Lead induces increased water permeability in astrocytes expressing aquaporin 4[J]. Neuroscience, 2005, 136(1): 105-114. DOI: 10.1016/j.neuroscience.2005.07.027.
[63]
Zhong Z, Sun Y, Wang B, et al. Involvement of mitogen-activated protein kinase pathways in ferrous iron-induced aquaporin-4 expression in cultured astrocytes[J]. Neurotoxicology, 2019, 73: 142-149. DOI: 10.1016/j.neuro.2019.03.006.
[64]
Rao KV, Jayakumar AR, Reddy PV, et al. Aquaporin-4 in manganese-treated cultured astrocytes[J]. Glia, 2010, 58(12):1490-1499. DOI: 10.1002/glia.21023.
[65]
Vandebroek A, Yasui M. Cu1+, but not Cu2+ is capable of inhibition of AQP4 permeability in an in vitro CHO cell based model[J]. Biochem Biophys Rep, 2021, 28: 101132. DOI: 10.1016/j.bbrep.2021.101132.
[1] 杨钊, 姚裕家, 付雪梅. 新生鼠缺氧缺血损伤脑组织水通道蛋白-4表达及意义[J]. 中华妇幼临床医学杂志(电子版), 2007, 03(01): 16-16.
[2] 刘小燕, 龙乾发, 席俊秀, 杜明皓, 黄晓欢. 细胞外囊泡介导的胶质细胞交互作用对神经炎症的调节意义及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 235-241.
[3] 朱东京, 鲜盼盼, 王甜, 贺中正, 杨彦平, 谢非, 龙乾发. 间充质干细胞外泌体对海马星形胶质细胞活化的抑制作用研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(02): 99-105.
[4] 裴雪婷, 卢建民, Yiwen Li, Rong Wen. 中脑星形胶质细胞源性神经营养因子在视网膜Müller细胞中诱导激活p44/42丝裂原活化蛋白激酶信号通路的实验研究[J]. 中华眼科医学杂志(电子版), 2019, 09(06): 328-334.
[5] 郭航, 马亚群, 李海红, 马丽, 卢彦, 王筱君, 马玉龙. 星形胶质细胞在三方突触中对突触信息的加工处理和调控作用[J]. 中华神经创伤外科电子杂志, 2019, 05(03): 182-185.
[6] 高谋, 徐如祥, 王海峰, 许民辉, 董勤, 姚慧, 张岩, 杨阳, 党圆圆, 张洪钿, 杨志军. 诱导型神经干细胞对颅脑创伤后免疫细胞的影响[J]. 中华神经创伤外科电子杂志, 2017, 03(06): 355-359.
[7] 李静超, 欧阳彬. 脑乳酸代谢的特殊性以及其生物学功能的研究进展[J]. 中华重症医学电子杂志, 2018, 04(02): 195-199.
[8] 郑薏, 彭雯雯, 钟月丽. MicroRNA-34a调控电针对缺血再灌注损伤大鼠反应性星形胶质细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 135-141.
[9] 杨逸飞, 李昊. 脑部类淋巴系统的研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(01): 52-56.
[10] 梁飞, 魏魏, 药泽蓉, 李晓泽. 血红素加氧酶1对人脊髓星形胶质细胞缺氧/复氧损伤的保护作用[J]. 中华临床实验室管理电子杂志, 2018, 06(04): 222-225.
阅读次数
全文


摘要