切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2019, Vol. 05 ›› Issue (03) : 182 -185. doi: 10.3877/cma.j.issn.2095-9141.2019.03.013

所属专题: 文献

综述

星形胶质细胞在三方突触中对突触信息的加工处理和调控作用
郭航1, 马亚群1, 李海红1, 马丽1, 卢彦1, 王筱君1, 马玉龙2,()   
  1. 1. 100700 北京,解放军总医院第七医学中心麻醉科
    2. 100853 北京,解放军总医院第一医学中心麻醉科
  • 收稿日期:2018-11-05 出版日期:2019-06-15
  • 通信作者: 马玉龙
  • 基金资助:
    国家自然科学青年基金(8171072)

Role of astrocytes in controlling synaptic information in tripartite synapses

Hang Guo1, Yaqun Ma1, Haihong Li1, Li Ma1, Yan Lu1, Xiaojun Wang1, Yulong Ma2,()   

  1. 1. Department of Anesthesiology, The Seventh Medical Center, The PLA General Hospital, Beijing 100700, China
    2. Department of Anesthesiology, The First Medical Center, The PLA General Hospital, Beijing 100853, China
  • Received:2018-11-05 Published:2019-06-15
  • Corresponding author: Yulong Ma
  • About author:
    Corresponding author: Ma Yulong, Email:
引用本文:

郭航, 马亚群, 李海红, 马丽, 卢彦, 王筱君, 马玉龙. 星形胶质细胞在三方突触中对突触信息的加工处理和调控作用[J]. 中华神经创伤外科电子杂志, 2019, 05(03): 182-185.

Hang Guo, Yaqun Ma, Haihong Li, Li Ma, Yan Lu, Xiaojun Wang, Yulong Ma. Role of astrocytes in controlling synaptic information in tripartite synapses[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2019, 05(03): 182-185.

传统观念认为脑组织功能专属于神经元活动,最新研究表明除了经典的突触前、后神经元之间存在"双向"信息流之外,星形胶质细胞也参与突触的神经元间信息交换、对突触活性做出反应、调节突触传递等过程。本文将对星形角质细胞在突触生理学中的作用,就其整合和加工处理突触信息并通过释放胶质递质最终调节突触传递和可塑性综述如下。

Traditionally, brain function is considered to be exclusive to neuronal activity. Recent studies have shown that in addition to the classical "bidirectional" information flow between presynaptic and postsynaptic neurons, astrocytes also participate in the process of information exchange between synaptic neurons, response to synaptic activity, and regulation of synaptic transmission. We review herein astrocytes integrate and process synaptic information and finally regulate synaptic transmission and plasticity through releasing gliotransmitters.

[1]
Perea G, Navarrete M, Araque A. Tripartite synapses: astrocytes process and control synaptic information[J]. Trends Neurosci, 2009, 32(8): 421-431.
[2]
Orkand RK, Nicholls JG, Kuffler SW. Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia[J]. J Neurophysiol, 1966, 29(4): 788-806.
[3]
Verkhratsky A, Steinhäuser C. Ion channels in glial cells[J]. Brain Res Brain Res Rev, 2000, 32(2): 380-412.
[4]
Charles AC, Merrill JE, Dirksen ER, et al. Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate[J]. Neuron, 1991, 6(6): 983-992.
[5]
Perea G, Araque A. Glial calcium signaling and neuron-glia communication[J]. Cell Calcium, 2005, 38(3-4): 375-382.
[6]
Haustein MD, Kracun S, Lu XH, et al. Conditions and constraints for astrocyte calcium signaling in the hippocampal mossy fiber pathway[J]. Neuron, 2014, 82(2): 413-429.
[7]
Rosa JM, Bos R, Sack GS, et al. Neuron-glia signaling in developing retina mediated by neurotransmitter spillover[J]. Elife, 2015, 4: e09590.
[8]
Holmström KM, Marina N, Baev AY, et al. Signalling properties of inorganic polyphosphate in the mammalian brain[J]. Nat Commun, 2013, 4: 1362.
[9]
Agarwal A, Wu PH, Hughes EG, et al. Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes[J]. Neuron, 2017, 93(3): 587-605. e7.
[10]
Rossi D. Astrocyte physiopathology: at the crossroads of intercellular networking, inflammation and cell death[J]. Prog Neurobiol, 2015, 130: 86-120.
[11]
Srinivasan R, Lu TY, Chai H, et al. New transgenic mouse lines for selectively targeting astrocytes and studying calcium signals in astrocyte processes in situ and in vivo[J]. Neuron, 2016, 92(6): 1181-1195.
[12]
Poskanzer KE, Yuste R. Astrocytes regulate cortical state switching in vivo[J]. Proc Natl Acad Sci USA, 2016, 113(19): E2675-E2684.
[13]
Srinivasan R, Huang BS, Venugopal S, et al. Ca(2+) signaling in astrocytes from Ip3r2(-/-) mice in brain slices and during startle responses in vivo[J]. Nat Neurosci, 2015, 18(5): 708-717.
[14]
Sonoda K, Matsui T, Bito H, et al. Astrocytes in the mouse visual cortex reliably respond to visual stimulation[J]. Biochem Biophys Res Commun, 2018, 505(4): 1216-1222.
[15]
Ma Z, Stork T, Bergles DE, et al. Neuromodulators signal through astrocytes to alter neural circuit activity and behaviour[J]. Nature, 2016, 539(7629): 428-432.
[16]
Reynolds JP, Zheng K, Rusakov DA. Multiplexed calcium imaging of single-synapse activity and astroglial responses in the intact brain[J]. Neurosci Lett, 2018, 689: 26-32.
[17]
Cianchetti FA, Kim DH, Dimiduk S, et al. Stimulus-evoked calcium transients in somatosensory cortex are temporarily inhibited by a nearby microhemorrhage[J]. PLoS One, 2013, 8(5): e65663.
[18]
Shen JX, Yakel JL. Functional α7 nicotinic ACh receptors on astrocytes in rat hippocampal CA1 slices[J]. J Mol Neurosci, 2012, 48(1): 14-21.
[19]
Covelo A, Araque A. Neuronal activity determines distinct gliotransmitter release from a single astrocyte[J]. eLife, 2018, 7: pii e32237.
[20]
Parri HR, Gould TM, Crunelli V. Sensory and cortical activation of distinct glial cell subtypes in the somatosensory thalamus of young rats[J]. Eur J Neurosci, 2010, 32(1): 29-40.
[21]
Perea G, Araque A. Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes[J]. J Neurosci, 2005, 25(9): 2192-2203.
[22]
Sul JY, Orosz G, Givens RS, et al. Astrocytic connectivity in the hippocampus[J]. Neuron Glia Biol, 2004, 1(1): 3-11.
[23]
Oka M, Wada M, Wu Q, et al. Functional expression of metabotropic GABAB receptors in primary cultures of astrocytes from rat cerebral cortex[J]. Biochem Biophys Res Commun, 2006, 341(3): 874-881.
[24]
Volterra A, Bezzi P. Chapter 13: Release of transmitters from glial cells//The tripartite synapse: glia in synaptic transmission[M]. Oxford: Oxford University Press, 2002: 164-184.
[25]
Bohmbach K, Schwarz MK, Schoch S, et al. The structural and functional evidence for vesicular release from astrocytes in situ[J]. Brain Res Bull, 2018, 136: 65-75.
[26]
Liu T, Sun L, Xiong Y, et al. Calcium triggers exocytosis from two types of organelles in a single astrocyte[J]. J Neurosci, 2011, 31(29): 10593-10601.
[27]
Zorec R, Parpura V, Verkhratsky A. Astroglial vesicular network: evolutionary trends, physiology and pathophysiology[J]. Acta Physiol (Oxf), 2018, 222(2): e12915.
[28]
Malarkey EB, Parpura V. Mechanisms of glutamate release from astrocytes[J]. Neurochem Int, 2008, 52(1-2): 142-154.
[29]
Araque A, Perea G. Glial modulation of synaptic transmission in culture[J]. Glia, 2010, 47(3): 241-248.
[30]
Volterra A, Steinhauser C. Glial modulation of synaptic transmission in the hippocampus[J]. Glia, 2004, 47(3): 249-257.
[31]
Dauth S, Maoz BM, Sheehy SP, et al. Neurons derived from different brain regions are inherently different in vitro: a novel multiregional brain-on-a-chip[J]. J Neurophysiol, 2017, 117(3): 1320-1341.
[32]
Shigetomi E, Bowser DN, Sofroniew MV, et al. Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons[J]. J Neurosci, 2008, 28(26): 6659-6663.
[33]
Gómez-Gonzalo M, Zehnder T, Requie LM, et al. Insights into the release mechanism of astrocytic glutamate evoking in neurons NMDA receptor-mediated slow depolarizing inward currents[J]. Glia, 2018, 66(10): 2188-2199.
[34]
Pan YZ, Rutecki PA. Enhanced excitatory synaptic network activity following transient group I metabotropic glutamate activation[J]. Neuroscience, 2014, 275: 22-32.
[35]
Fleming TM, Scott V, Naskar K, et al. State-dependent changes in astrocyte regulation of extrasynaptic NMDA receptor signalling in neurosecretory neurons[J]. J Physiol, 2011, 589(Pt 16): 3929-3941.
[36]
Yang YJ, Gozen O, Watkins A, et al. Pre-synaptic regulation of astroglial excitatory neurotransmitter transporter GLT1[J]. Neuron, 2009, 61(6): 880-894.
[37]
Copeland CS, Wall TM, Sims RE, et al. Astrocytes modulate thalamic sensory processing via mGlu2 receptor activation[J]. Neuropharmacology, 2017, 121: 100-110.
[38]
Lauderdale K, Murphy T, Tung T, et al. Osmotic edema rapidly increases neuronal excitability through activation of NMDA receptor-dependent slow inward currents in juvenile and adult hippocampus[J]. ASN Neuro, 2015, 7(5): pii 1759091415605115.
[39]
Henneberger C, Papouin T, Oliet SH, et al. Long-term potentiation depends on release of D-serine from astrocytes[J]. Nature, 2010, 463(7278): 232-236.
[1] 刘小燕, 龙乾发, 席俊秀, 杜明皓, 黄晓欢. 细胞外囊泡介导的胶质细胞交互作用对神经炎症的调节意义及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 235-241.
[2] 朱东京, 鲜盼盼, 王甜, 贺中正, 杨彦平, 谢非, 龙乾发. 间充质干细胞外泌体对海马星形胶质细胞活化的抑制作用研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(02): 99-105.
[3] 裴雪婷, 卢建民, Yiwen Li, Rong Wen. 中脑星形胶质细胞源性神经营养因子在视网膜Müller细胞中诱导激活p44/42丝裂原活化蛋白激酶信号通路的实验研究[J]. 中华眼科医学杂志(电子版), 2019, 09(06): 328-334.
[4] 高谋, 徐如祥, 王海峰, 许民辉, 董勤, 姚慧, 张岩, 杨阳, 党圆圆, 张洪钿, 杨志军. 诱导型神经干细胞对颅脑创伤后免疫细胞的影响[J]. 中华神经创伤外科电子杂志, 2017, 03(06): 355-359.
[5] 李静超, 欧阳彬. 脑乳酸代谢的特殊性以及其生物学功能的研究进展[J]. 中华重症医学电子杂志, 2018, 04(02): 195-199.
[6] 郑薏, 彭雯雯, 钟月丽. MicroRNA-34a调控电针对缺血再灌注损伤大鼠反应性星形胶质细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 135-141.
[7] 梁飞, 魏魏, 药泽蓉, 李晓泽. 血红素加氧酶1对人脊髓星形胶质细胞缺氧/复氧损伤的保护作用[J]. 中华临床实验室管理电子杂志, 2018, 06(04): 222-225.
阅读次数
全文


摘要