[1] |
Perea G, Navarrete M, Araque A. Tripartite synapses: astrocytes process and control synaptic information[J]. Trends Neurosci, 2009, 32(8): 421-431.
|
[2] |
Orkand RK, Nicholls JG, Kuffler SW. Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia[J]. J Neurophysiol, 1966, 29(4): 788-806.
|
[3] |
Verkhratsky A, Steinhäuser C. Ion channels in glial cells[J]. Brain Res Brain Res Rev, 2000, 32(2): 380-412.
|
[4] |
Charles AC, Merrill JE, Dirksen ER, et al. Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate[J]. Neuron, 1991, 6(6): 983-992.
|
[5] |
Perea G, Araque A. Glial calcium signaling and neuron-glia communication[J]. Cell Calcium, 2005, 38(3-4): 375-382.
|
[6] |
Haustein MD, Kracun S, Lu XH, et al. Conditions and constraints for astrocyte calcium signaling in the hippocampal mossy fiber pathway[J]. Neuron, 2014, 82(2): 413-429.
|
[7] |
Rosa JM, Bos R, Sack GS, et al. Neuron-glia signaling in developing retina mediated by neurotransmitter spillover[J]. Elife, 2015, 4: e09590.
|
[8] |
Holmström KM, Marina N, Baev AY, et al. Signalling properties of inorganic polyphosphate in the mammalian brain[J]. Nat Commun, 2013, 4: 1362.
|
[9] |
Agarwal A, Wu PH, Hughes EG, et al. Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes[J]. Neuron, 2017, 93(3): 587-605. e7.
|
[10] |
Rossi D. Astrocyte physiopathology: at the crossroads of intercellular networking, inflammation and cell death[J]. Prog Neurobiol, 2015, 130: 86-120.
|
[11] |
Srinivasan R, Lu TY, Chai H, et al. New transgenic mouse lines for selectively targeting astrocytes and studying calcium signals in astrocyte processes in situ and in vivo[J]. Neuron, 2016, 92(6): 1181-1195.
|
[12] |
Poskanzer KE, Yuste R. Astrocytes regulate cortical state switching in vivo[J]. Proc Natl Acad Sci USA, 2016, 113(19): E2675-E2684.
|
[13] |
Srinivasan R, Huang BS, Venugopal S, et al. Ca(2+) signaling in astrocytes from Ip3r2(-/-) mice in brain slices and during startle responses in vivo[J]. Nat Neurosci, 2015, 18(5): 708-717.
|
[14] |
Sonoda K, Matsui T, Bito H, et al. Astrocytes in the mouse visual cortex reliably respond to visual stimulation[J]. Biochem Biophys Res Commun, 2018, 505(4): 1216-1222.
|
[15] |
Ma Z, Stork T, Bergles DE, et al. Neuromodulators signal through astrocytes to alter neural circuit activity and behaviour[J]. Nature, 2016, 539(7629): 428-432.
|
[16] |
Reynolds JP, Zheng K, Rusakov DA. Multiplexed calcium imaging of single-synapse activity and astroglial responses in the intact brain[J]. Neurosci Lett, 2018, 689: 26-32.
|
[17] |
Cianchetti FA, Kim DH, Dimiduk S, et al. Stimulus-evoked calcium transients in somatosensory cortex are temporarily inhibited by a nearby microhemorrhage[J]. PLoS One, 2013, 8(5): e65663.
|
[18] |
Shen JX, Yakel JL. Functional α7 nicotinic ACh receptors on astrocytes in rat hippocampal CA1 slices[J]. J Mol Neurosci, 2012, 48(1): 14-21.
|
[19] |
Covelo A, Araque A. Neuronal activity determines distinct gliotransmitter release from a single astrocyte[J]. eLife, 2018, 7: pii e32237.
|
[20] |
Parri HR, Gould TM, Crunelli V. Sensory and cortical activation of distinct glial cell subtypes in the somatosensory thalamus of young rats[J]. Eur J Neurosci, 2010, 32(1): 29-40.
|
[21] |
Perea G, Araque A. Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes[J]. J Neurosci, 2005, 25(9): 2192-2203.
|
[22] |
Sul JY, Orosz G, Givens RS, et al. Astrocytic connectivity in the hippocampus[J]. Neuron Glia Biol, 2004, 1(1): 3-11.
|
[23] |
Oka M, Wada M, Wu Q, et al. Functional expression of metabotropic GABAB receptors in primary cultures of astrocytes from rat cerebral cortex[J]. Biochem Biophys Res Commun, 2006, 341(3): 874-881.
|
[24] |
Volterra A, Bezzi P. Chapter 13: Release of transmitters from glial cells//The tripartite synapse: glia in synaptic transmission[M]. Oxford: Oxford University Press, 2002: 164-184.
|
[25] |
Bohmbach K, Schwarz MK, Schoch S, et al. The structural and functional evidence for vesicular release from astrocytes in situ[J]. Brain Res Bull, 2018, 136: 65-75.
|
[26] |
Liu T, Sun L, Xiong Y, et al. Calcium triggers exocytosis from two types of organelles in a single astrocyte[J]. J Neurosci, 2011, 31(29): 10593-10601.
|
[27] |
Zorec R, Parpura V, Verkhratsky A. Astroglial vesicular network: evolutionary trends, physiology and pathophysiology[J]. Acta Physiol (Oxf), 2018, 222(2): e12915.
|
[28] |
Malarkey EB, Parpura V. Mechanisms of glutamate release from astrocytes[J]. Neurochem Int, 2008, 52(1-2): 142-154.
|
[29] |
Araque A, Perea G. Glial modulation of synaptic transmission in culture[J]. Glia, 2010, 47(3): 241-248.
|
[30] |
Volterra A, Steinhauser C. Glial modulation of synaptic transmission in the hippocampus[J]. Glia, 2004, 47(3): 249-257.
|
[31] |
Dauth S, Maoz BM, Sheehy SP, et al. Neurons derived from different brain regions are inherently different in vitro: a novel multiregional brain-on-a-chip[J]. J Neurophysiol, 2017, 117(3): 1320-1341.
|
[32] |
Shigetomi E, Bowser DN, Sofroniew MV, et al. Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons[J]. J Neurosci, 2008, 28(26): 6659-6663.
|
[33] |
Gómez-Gonzalo M, Zehnder T, Requie LM, et al. Insights into the release mechanism of astrocytic glutamate evoking in neurons NMDA receptor-mediated slow depolarizing inward currents[J]. Glia, 2018, 66(10): 2188-2199.
|
[34] |
Pan YZ, Rutecki PA. Enhanced excitatory synaptic network activity following transient group I metabotropic glutamate activation[J]. Neuroscience, 2014, 275: 22-32.
|
[35] |
Fleming TM, Scott V, Naskar K, et al. State-dependent changes in astrocyte regulation of extrasynaptic NMDA receptor signalling in neurosecretory neurons[J]. J Physiol, 2011, 589(Pt 16): 3929-3941.
|
[36] |
Yang YJ, Gozen O, Watkins A, et al. Pre-synaptic regulation of astroglial excitatory neurotransmitter transporter GLT1[J]. Neuron, 2009, 61(6): 880-894.
|
[37] |
Copeland CS, Wall TM, Sims RE, et al. Astrocytes modulate thalamic sensory processing via mGlu2 receptor activation[J]. Neuropharmacology, 2017, 121: 100-110.
|
[38] |
Lauderdale K, Murphy T, Tung T, et al. Osmotic edema rapidly increases neuronal excitability through activation of NMDA receptor-dependent slow inward currents in juvenile and adult hippocampus[J]. ASN Neuro, 2015, 7(5): pii 1759091415605115.
|
[39] |
Henneberger C, Papouin T, Oliet SH, et al. Long-term potentiation depends on release of D-serine from astrocytes[J]. Nature, 2010, 463(7278): 232-236.
|