[1] |
Balestrino R, Schapira AHV. Parkinson disease[J]. Eur J Neurol, 2020, 27(1): 27-42.
|
[2] |
Henrich MT, Geibl FF, Lee B, et al. A53T-α-synuclein overexpression in murine locus coeruleus induces Parkinson’s disease-like pathology in neurons and glia[J]. Acta Neuropathol Commun, 2018, 6(1): 39.
|
[3] |
Feng J, Zhao S, Chen X, et al. Biochemical and structural study of Arabidopsis hexokinase 1[J]. Acta Crystallogr D Biol Crystallogr, 2015, 71(Pt 2): 367-375.
|
[4] |
Fukao T, Lopaschuk GD, Mitchell GA. Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry[J]. Prostaglandins Leukot Essent Fatty Acids, 2004, 70(3): 243-251.
|
[5] |
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2220.
|
[6] |
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357-360.
|
[7] |
Roberts A, Trapnell C, Donaghey J, et al. Improving RNA-Seq expression estimates by correcting for fragment bias[J]. Genome Biology, 2011, 12(3): R22.
|
[8] |
Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nat Biotechnol, 2010, 28(5): 511-515.
|
[9] |
Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data[J]. Bioinformatics, 2015, 31(2): 166-169.
|
[10] |
Wang C, Liu H, Yang M, et al. RNA-Seq based transcriptome analysis of endothelial differentiation of bone marrow mesenchymal stem cells[J]. Eur J Vasc Endovasc Surg, 2020, 59(5): 834-842.
|
[11] |
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2[J]. Nature Methods, 2012, 9(4): 357-359.
|
[12] |
Roberts A, Pachter L. Streaming fragment assignment for real-time analysis of sequencing experiments[J]. Nature Methods, 2013, 10(1): 71-73.
|
[13] |
Paoli A, Bianco A, Damiani E, et al. Ketogenic diet in neuromuscular and neurodegenerative diseases[J]. Biomed Res Int, 2014, 2014: 474296.
|
[14] |
Pagano G, Polychronis S, Wilson H, et al. Diabetes mellitus and Parkinson disease[J]. Neurology, 2018, 90(19): e1654-e1662.
|
[15] |
Firbank MJ, Yarnall AJ, Lawson RA, et al. Cerebral glucose metabolism and cognition in newly diagnosed Parkinson’s disease: ICICLE-PD study[J]. J Neurol Neurosurg Psychiatry, 2017, 88(4): 310-316.
|
[16] |
Arnaldi D, Meles SK, Giuliani A, et al. Brain glucose metabolism heterogeneity in idiopathic REM sleep behavior disorder and in Parkinson’s disease[J]. J Parkinsons Dis, 2019, 9(1): 229-239.
|
[17] |
Shahmoradian SH, Lewis AJ, Genoud C, et al. Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes[J]. Nat Neurosci, 2019, 22(7): 1099-1109.
|
[18] |
Hallett PJ, Engelender S, Isacson O. Lipid and immune abnormalities causing age-dependent neurodegeneration and Parkinson’s disease[J]. J Neuroinflammation, 2019, 16(1): 153.
|
[19] |
Indellicato R, Trinchera M. The link between Gaucher disease and Parkinson’s disease sheds light on old and novel disorders of sphingolipid metabolism[J]. Int J Mol Sci, 2019, 20(13): 3304.
|
[20] |
Calzada E, Onguka O, Claypool SM. Phosphatidylethanolamine metabolism in health and disease[J]. Int Rev Cell Mol Biol, 2016, 321: 29-88.
|
[21] |
Xicoy H, Wieringa B, Martens GJM. The role of lipids in Parkinson’s disease[J]. Cells, 2019, 8(1): 27.
|
[22] |
Lamade AM, Anthonymuthu TS, Hier ZE, et al. Mitochondrial damage & lipid signaling in traumatic brain injury[J]. Exp Neurol, 2020, 329: 113307.
|
[23] |
García-Sanz P, Orgaz L, Fuentes JM, et al. Cholesterol and multilamellar bodies: lysosomal dysfunction in GBA-Parkinson disease[J]. Autophagy, 2018, 14(4): 717-718.
|
[24] |
Valadas JS, Esposito G, Vandekerkhove D, et al. ER lipid defects in neuropeptidergic neurons impair sleep patterns in Parkinson’s disease[J]. Neuron, 2018, 98(6): 1155-1169.e6.
|
[25] |
Ikuno M, Yamakado H, Akiyama H, et al. GBA haploinsufficiency accelerates alpha-synuclein pathology with altered lipid metabolism in a prodromal model of Parkinson’s disease[J]. Hum Mol Genet, 2019, 28(11): 1894-1904.
|
[26] |
Giannoccaro MP, La Morgia C, Rizzo G, et al. Mitochondrial DNA and primary mitochondrial dysfunction in Parkinson’s disease[J]. Mov Disord, 2017, 32(3): 346-363.
|
[27] |
Pavlou MAS, Outeiro TF. Epigenetics in Parkinson’s disease[J]. Adv Exp Med Biol, 2017, 978: 363-390.
|
[28] |
Gui Y, Liu H, Zhang L, et al. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease[J]. Oncotarget, 2015, 6(35): 37043-37053.
|
[29] |
Cai R, Zhang Y, Simmering JE, et al. Enhancing glycolysis attenuates Parkinson’s disease progression in models and clinical databases[J]. J Clin Invest, 2019, 129(10): 4539-4549.
|
[30] |
Borroto-Escuela DO, Perez De La Mora M, Manger P, et al. Brain dopamine transmission in health and Parkinson’s disease: modulation of synaptic transmission and plasticity through volume transmission and dopamine heteroreceptors[J]. Front Synaptic Neurosci, 2018, 10: 20.
|
[31] |
Hurley MJ, Brandon B, Gentleman SM, et al. Parkinson’s disease is associated with altered expression of CaV1 channels and calcium-binding proteins[J]. Brain, 2013, 136(Pt 7): 2077-2097.
|
[32] |
Baluchnejadmojarad T, Eftekhari SM, Jamali-Raeufy N, et al. The anti-aging protein klotho alleviates injury of nigrostriatal dopaminergic pathway in 6-hydroxydopamine rat model of Parkinson’s disease: involvement of PKA/CaMKII/CREB signaling[J]. Exp Gerontol, 2017, 100: 70-76.
|