切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2021, Vol. 07 ›› Issue (03) : 161 -169. doi: 10.3877/cma.j.issn.2095-9141.2021.03.008

基础研究

转录组测序分析:帕金森病小鼠PI3K、ERK和P38信号通路和代谢关系的研究
刘自华1, 王德贵2, 李晓娟3, 唐冬荣3, 王雯3, 陈军义3, 王建林1,()   
  1. 1. 730000 兰州,兰州大学生命科学学院动物学与生物医学系
    2. 730000 兰州,兰州大学基础医学院人体解剖和组织胚胎学教研室
    3. 730030 兰州,兰州大学第二医院输血科
  • 收稿日期:2020-08-18 出版日期:2021-06-15
  • 通信作者: 王建林
  • 基金资助:
    甘肃省青年科学基金(17JR5JA227)

Transcriptome sequencing analysis: study on the PI3K, ERK and P38 signaling pathways and metabolic relationship in mice with Parkinson’s disease

Zihua Liu1, Degui Wang2, Xiaojuan Li3, Dongrong Tang3, Wen Wang3, Junyi Chen3, Jianlin Wang1,()   

  1. 1. Department of Zoology and Biomedical Science, School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
    2. Department of Anatomy and Histology, Lanzhou University, School of Basic Medical Sciences, Lanzhou 730000, China
    3. Department of Blood Transfusion, Second Hospital of Lanzhou University, Lanzhou 730030, China
  • Received:2020-08-18 Published:2021-06-15
  • Corresponding author: Jianlin Wang
引用本文:

刘自华, 王德贵, 李晓娟, 唐冬荣, 王雯, 陈军义, 王建林. 转录组测序分析:帕金森病小鼠PI3K、ERK和P38信号通路和代谢关系的研究[J]. 中华神经创伤外科电子杂志, 2021, 07(03): 161-169.

Zihua Liu, Degui Wang, Xiaojuan Li, Dongrong Tang, Wen Wang, Junyi Chen, Jianlin Wang. Transcriptome sequencing analysis: study on the PI3K, ERK and P38 signaling pathways and metabolic relationship in mice with Parkinson’s disease[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2021, 07(03): 161-169.

目的

研究帕金森病(PD)小鼠代谢过程中相关信号通路表达的变化。

方法

通过A53T小鼠和正常C57BL/6小鼠黑质部位转录组测序的方法。用Trimmomatic软件质控,hisat2软件比对基因组。cufflinks进行基因FPKM表达量定量分析;htseq-count计算表达量差异;R package进行标准化数据;GO和KEGG富集分析差异基因筛选、聚类分析和功能富集;Q-PCR验证。

结果

A53T小鼠与WT组比较:脂类代谢相关基因肉毒碱棕榈酰基转移酶1A(CPT1)、核酸代谢相关基因(Nme7)和糖类代谢相关基因己糖激酶1(hexokinase 1)表达减少;能量代谢相关基因三磷酸腺苷(ATP)生成减少、离子通道蛋白CaM和谷氨酸受体(GluR)表达降低;IP3R生成减少;多巴胺能受体(D2R)表达增加;信号通路相关基因P38PI3KERK5表达减少。

结论

PD小鼠通过PI3K、ERK和P38信号通路导致代谢水平降低。

Objective

To study the changes in metabolism and signaling pathway related factors in mice with Parkinson’s disease (PD).

Methods

Transcriptome sequencing and Q-PCR were performed in A53T mice compared with normal C57BL/6 (WT) mice. Quality control was done by Trimmomatic software. Genome alignment was done by hisat2 software. The expression of gene FPKM was done by cufflinks software. The difference expression was calculated by htseq-count software. Standardized data was done by R package software. Differential gene screening, cluster analysis and functional enrichment are analyzed by GO and KEGG enrichment. The results were verified by Q-PCR.

Results

The expression of Lipoid metabolism-related genes Botoine palmityltransferases 1A (CPT1), nucleic acid metabolism-related genes (Nme7), glucose metabolism-related gene hexosaccharide kinase 1 (hexokinase 1) and adenosine-triphosphate (ATP) decreased in A53T mice compared with WT mice; also the expression of caM, GluR and IP3R decreased in A53T mice compared with WT mice; the expression of D2R increased in A53T mice compared with WT mice; the expression of signaling pathway-related genes P38, ERK5 and IP3R decreased in A53T mice compared with WT mice.

Conclusion

Metabolism decreased in mice with PD through the PI3k, ERK and P38 signaling pathways.

表1 引物设计
图1 A53T组与WT组代谢相关因子表达变化
图2 PD小鼠模型相关受体和CaM的表达变化
图3 PD小鼠模型信号通路相关基因PI3KP38ERK5表达变化
[1]
Balestrino R, Schapira AHV. Parkinson disease[J]. Eur J Neurol, 2020, 27(1): 27-42.
[2]
Henrich MT, Geibl FF, Lee B, et al. A53T-α-synuclein overexpression in murine locus coeruleus induces Parkinson’s disease-like pathology in neurons and glia[J]. Acta Neuropathol Commun, 2018, 6(1): 39.
[3]
Feng J, Zhao S, Chen X, et al. Biochemical and structural study of Arabidopsis hexokinase 1[J]. Acta Crystallogr D Biol Crystallogr, 2015, 71(Pt 2): 367-375.
[4]
Fukao T, Lopaschuk GD, Mitchell GA. Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry[J]. Prostaglandins Leukot Essent Fatty Acids, 2004, 70(3): 243-251.
[5]
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2220.
[6]
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357-360.
[7]
Roberts A, Trapnell C, Donaghey J, et al. Improving RNA-Seq expression estimates by correcting for fragment bias[J]. Genome Biology, 2011, 12(3): R22.
[8]
Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nat Biotechnol, 2010, 28(5): 511-515.
[9]
Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data[J]. Bioinformatics, 2015, 31(2): 166-169.
[10]
Wang C, Liu H, Yang M, et al. RNA-Seq based transcriptome analysis of endothelial differentiation of bone marrow mesenchymal stem cells[J]. Eur J Vasc Endovasc Surg, 2020, 59(5): 834-842.
[11]
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2[J]. Nature Methods, 2012, 9(4): 357-359.
[12]
Roberts A, Pachter L. Streaming fragment assignment for real-time analysis of sequencing experiments[J]. Nature Methods, 2013, 10(1): 71-73.
[13]
Paoli A, Bianco A, Damiani E, et al. Ketogenic diet in neuromuscular and neurodegenerative diseases[J]. Biomed Res Int, 2014, 2014: 474296.
[14]
Pagano G, Polychronis S, Wilson H, et al. Diabetes mellitus and Parkinson disease[J]. Neurology, 2018, 90(19): e1654-e1662.
[15]
Firbank MJ, Yarnall AJ, Lawson RA, et al. Cerebral glucose metabolism and cognition in newly diagnosed Parkinson’s disease: ICICLE-PD study[J]. J Neurol Neurosurg Psychiatry, 2017, 88(4): 310-316.
[16]
Arnaldi D, Meles SK, Giuliani A, et al. Brain glucose metabolism heterogeneity in idiopathic REM sleep behavior disorder and in Parkinson’s disease[J]. J Parkinsons Dis, 2019, 9(1): 229-239.
[17]
Shahmoradian SH, Lewis AJ, Genoud C, et al. Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes[J]. Nat Neurosci, 2019, 22(7): 1099-1109.
[18]
Hallett PJ, Engelender S, Isacson O. Lipid and immune abnormalities causing age-dependent neurodegeneration and Parkinson’s disease[J]. J Neuroinflammation, 2019, 16(1): 153.
[19]
Indellicato R, Trinchera M. The link between Gaucher disease and Parkinson’s disease sheds light on old and novel disorders of sphingolipid metabolism[J]. Int J Mol Sci, 2019, 20(13): 3304.
[20]
Calzada E, Onguka O, Claypool SM. Phosphatidylethanolamine metabolism in health and disease[J]. Int Rev Cell Mol Biol, 2016, 321: 29-88.
[21]
Xicoy H, Wieringa B, Martens GJM. The role of lipids in Parkinson’s disease[J]. Cells, 2019, 8(1): 27.
[22]
Lamade AM, Anthonymuthu TS, Hier ZE, et al. Mitochondrial damage & lipid signaling in traumatic brain injury[J]. Exp Neurol, 2020, 329: 113307.
[23]
García-Sanz P, Orgaz L, Fuentes JM, et al. Cholesterol and multilamellar bodies: lysosomal dysfunction in GBA-Parkinson disease[J]. Autophagy, 2018, 14(4): 717-718.
[24]
Valadas JS, Esposito G, Vandekerkhove D, et al. ER lipid defects in neuropeptidergic neurons impair sleep patterns in Parkinson’s disease[J]. Neuron, 2018, 98(6): 1155-1169.e6.
[25]
Ikuno M, Yamakado H, Akiyama H, et al. GBA haploinsufficiency accelerates alpha-synuclein pathology with altered lipid metabolism in a prodromal model of Parkinson’s disease[J]. Hum Mol Genet, 2019, 28(11): 1894-1904.
[26]
Giannoccaro MP, La Morgia C, Rizzo G, et al. Mitochondrial DNA and primary mitochondrial dysfunction in Parkinson’s disease[J]. Mov Disord, 2017, 32(3): 346-363.
[27]
Pavlou MAS, Outeiro TF. Epigenetics in Parkinson’s disease[J]. Adv Exp Med Biol, 2017, 978: 363-390.
[28]
Gui Y, Liu H, Zhang L, et al. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease[J]. Oncotarget, 2015, 6(35): 37043-37053.
[29]
Cai R, Zhang Y, Simmering JE, et al. Enhancing glycolysis attenuates Parkinson’s disease progression in models and clinical databases[J]. J Clin Invest, 2019, 129(10): 4539-4549.
[30]
Borroto-Escuela DO, Perez De La Mora M, Manger P, et al. Brain dopamine transmission in health and Parkinson’s disease: modulation of synaptic transmission and plasticity through volume transmission and dopamine heteroreceptors[J]. Front Synaptic Neurosci, 2018, 10: 20.
[31]
Hurley MJ, Brandon B, Gentleman SM, et al. Parkinson’s disease is associated with altered expression of CaV1 channels and calcium-binding proteins[J]. Brain, 2013, 136(Pt 7): 2077-2097.
[32]
Baluchnejadmojarad T, Eftekhari SM, Jamali-Raeufy N, et al. The anti-aging protein klotho alleviates injury of nigrostriatal dopaminergic pathway in 6-hydroxydopamine rat model of Parkinson’s disease: involvement of PKA/CaMKII/CREB signaling[J]. Exp Gerontol, 2017, 100: 70-76.
[1] 陈春晖, 傅宴, 张源祥, 邱银汝, 梁志尧, 谢薇, 刘福秀. 三磷酸腺苷负荷超声造影在冠状动脉痉挛诊断中的应用[J]. 中华医学超声杂志(电子版), 2022, 19(02): 161-169.
[2] 李元子, 殷露, 何文, 肖杨, 周永进, 王雨萌, 杨静, 黄文燕, 张惠琴, 马惠姿, 杜丽娟. 动态超声弹性成像技术评估帕金森病肌强直程度的临床研究[J]. 中华医学超声杂志(电子版), 2021, 18(07): 696-700.
[3] 李晖, 范志勇, 耿西林, 常虎林, 吴武军, 张煜. 肝癌中线粒体膜蛋白ATAD3A表达与临床病理特征及预后的关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 157-161.
[4] 姬丽娅, 姬昂, 狄政莉, 熊婧, 刘志勤, 薛秀云, 费晓炜, 豆雅楠, 王利. 叶酸通过NLRP3/ASC/Caspase-1信号通路对HT22细胞拟帕金森损伤作用的研究[J]. 中华神经创伤外科电子杂志, 2022, 08(04): 196-203.
[5] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[6] 郑丽华, 钱一菁, 黄崇甄, 周春娜. 山茱萸环烯醚萜苷改善6-OHDA诱导帕金森病细胞模型的损伤[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(06): 324-331.
[7] 陈普建, 张璟, 陈芬, 陈怡伟, 余蓓蓓, 周春英. 双侧丘脑底核交叉电脉冲脑深部电刺激对帕金森病步态障碍的疗效观察[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(05): 298-301.
[8] 李嫣然, 王凯, 吴浩. 腰椎融合术后前后路联合翻修术治疗腰椎管狭窄合并帕金森病一例报道[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(05): 316-318.
[9] 李玺琳, 章邱东. 帕金森病患者胃肠功能障碍特点及其风险因素分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 145-149.
[10] 耿磊, 张照婷, 许磊, 黄海, 孙毅, 杨伏猛, 徐凯, 胡春峰. 帕金森病前驱期基底神经节环路磁共振弥散张量成像的应用研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 995-1003.
[11] 杨团峰, 孟雪, 王艳香, 卢葭, 孔德生, 赵元立, 刘献增. 男性帕金森病患者球海绵体肌反射初步研究[J]. 中华临床医师杂志(电子版), 2023, 17(01): 28-32.
[12] 苏程程, 马永强, 郎胜坤, 刘斌, 魏路清, 姬文婕. 盐皮质受体对脂多糖诱导的巨噬细胞NOD样受体热蛋白结构域相关蛋白3炎症复合体激活的作用及其机制[J]. 中华临床医师杂志(电子版), 2022, 16(05): 447-451.
[13] 谢艾伦, 郑冬燕, 蔡紫薇, 卢仁建, 彭永明, 张贺, 陈家隆. 鱼藤酮通过降低线粒体钙离子单向转运体蛋白表达促进多巴胺能神经元铁死亡[J]. 中华临床实验室管理电子杂志, 2023, 11(02): 71-78.
[14] 郭如烨, 孟黎明, 陈楠, 宋玉莹, 尹海燕, 郭岩. Apelin/APJ系统对帕金森病模型的神经保护作用及机制研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 276-282.
[15] 韩远远, 于紫涵, 杨玲, 程弘禹, 宋春杰. C反应蛋白与白蛋白比值和中性粒细胞与淋巴细胞比值对老年帕金森病的诊断价值[J]. 中华老年病研究电子杂志, 2023, 10(01): 14-19.
阅读次数
全文


摘要