[1] |
Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease[J]. Nat Rev Neurosci, 2014, 15(5): 300-312.
|
[2] |
Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration[J]. Annu Rev Immunol, 2017, 35: 441-468.
|
[3] |
Prinz M, Jung S, Priller J. Microglia biology: one century of evolving concepts[J]. Cell, 2019, 179(2): 292-311.
|
[4] |
Lawson LJ, Perry VH, Dri P, et al. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain[J]. Neuroscience, 1990, 39(1): 151-170.
|
[5] |
Gomez Perdiguero E, Klapproth K, Schulz C, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors[J]. Nature, 2015, 518(7540): 547-551.
|
[6] |
Hoeffel G, Ginhoux F. Ontogeny of tissue-resident macrophages[J]. Front Immunol, 2015, 6: 486.
|
[7] |
Ginhoux F, Greter M, Leboeuf M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages[J]. Science, 2010, 330(6005): 841-845.
|
[8] |
Abiega O, Beccari S, Diaz-Aparicio I, et al. Neuronal hyperactivity disturbs ATP microgradients, impairs microglial motility, and reduces phagocytic receptor expression triggering apoptosis/microglial phagocytosis uncoupling[J]. PLoS Biol, 2016, 14(5): e1002466.
|
[9] |
Rothhammer V, Borucki DM, Tjon EC, et al. Microglial control of astrocytes in response to microbial metabolites[J]. Nature, 2018, 557(7707): 724-728.
|
[10] |
Ueno M, Fujita Y, Tanaka T, et al. Layer V cortical neurons require microglial support for survival during postnatal development[J]. Nat Neurosci, 2013, 16(5): 543-551.
|
[11] |
Arno B, Grassivaro F, Rossi C, et al. Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex[J]. Nat Commun, 2014, 5: 5611.
|
[12] |
党圆圆,张洪钿,徐如祥.小胶质细胞在中枢神经系统创伤后的双重作用及调控机制[J].中华神经创伤外科电子杂志, 2016, 2(5): 305-312.
|
[13] |
Butovsky O, Koronyo-Hamaoui M, Kunis G, et al. Glatiramer acetate fights against Alzheimer’s disease by inducing dendritic-like microglia expressing insulin-like growth factor 1[J]. Proc Natl Acad Sci USA, 2006, 103(31): 11784-11789.
|
[14] |
Keren-Shaul H, Spinrad A, Weiner A, et al. A unique microglia type associated with restricting development of Alzheimer’s disease[J]. Cell, 2017, 169(7): 1276-1290.e17.
|
[15] |
Grun D, Lyubimova A, Kester L, et al. Single-cell messenger rna sequencing reveals rare intestinal cell types[J]. Nature, 2015, 525(7568): 251-255.
|
[16] |
Mrdjen D, Pavlovic A, Hartmann FJ, et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease[J]. Immunity, 2018, 48(3): 599.
|
[17] |
Bottcher C, Schlickeiser S, Sneeboer MAM, et al. Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry[J]. Nature neurosci, 2019, 22(1): 78-90.
|
[18] |
Prinz M, Erny D, Hagemeyer N. Ontogeny and homeostasis of CNS myeloid cells[J]. Nat Immunol, 2017, 18(4): 385-392.
|
[19] |
Goldmann T, Wieghofer P, Jordao MJ, et al. Origin, fate and dynamics of macrophages at central nervous system interfaces[J]. Nat Immunol, 2016, 17(7): 797-805.
|
[20] |
Jordao MJC, Sankowski R, Brendecke SM, et al. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation[J]. Science, 2019, 363(6425): eaat7554.
|
[21] |
Utz SG, See P, Mildenberger W, et al. Early fate defines microglia and non-parenchymal brain macrophage development[J]. Cell, 2020, 181(3): 557-573. e18.
|
[22] |
Arnold TD, Lizama CO, Cautivo KM, et al. Impaired αVβ8 and TGFβ signaling lead to microglial dysmaturation and neuromotor dysfunction[J]. J Exp Med, 2019, 216(4): 900-915.
|
[23] |
Mazaheri F, Breus O, Durdu S, et al. Distinct roles for BAI1 and TIM-4 in the engulfment of dying neurons by microglia[J]. Nat Commun, 2014, 5: 4046.
|
[24] |
Frost JL, Schafer DP. Microglia: architects of the developing nervous system[J]. Trends in cell biology, 2016, 26(8): 587-597.
|
[25] |
Mildner A, Schmidt H, Nitsche M, et al. Microglia in the adult brain arise from ly-6chiccr2+ monocytes only under defined host conditions[J]. Nat Neurosci, 2007, 10(12): 1544-1553.
|
[26] |
Ayata P, Badimon A, Strasburger HJ, et al. Epigenetic regulation of brain region-specific microglia clearance activity[J]. Nature Neurosci, 2018, 21(8): 1049-1060.
|
[27] |
Menassa DA, Gomez-Nicola D. Microglial dynamics during human brain development[J]. Front Immunol, 2018, 9: 1014.
|
[28] |
Goldmann T, Zeller N, Raasch J, et al. Usp18 lack in microglia causes destructive interferonopathy of the mouse brain[J]. EMBO J, 2015, 34(12): 1612-1629.
|
[29] |
Hammond TR, Dufort C, Dissing-Olesen L, et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes[J]. Immunity, 2019, 50(1): 253-271. e6.
|
[30] |
Li Q, Cheng Z, Zhou L, et al. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing[J]. Neuron, 2019, 101(2): 207-223. e10.
|
[31] |
Masuda T, Sankowski R, Staszewski O, et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution[J]. Nature, 2019, 566(7744): 388-392.
|
[32] |
Hagemeyer N, Hanft KM, Akriditou MA, et al. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood[J]. Acta neuropathologica, 2017, 134(3): 441-458.
|
[33] |
Krasemann S, Madore C, Cialic R, et al. The trem2-apoe pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases[J]. Immunity, 2017, 47(3): 566-581 e569.
|
[34] |
Grabert K, Michoel T, Karavolos MH, et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging[J]. Nature neuroscience, 2016, 19(3): 504-516.
|
[35] |
Guneykaya D, Ivanov A, Hernandez DP, et al. Transcriptional and translational differences of microglia from male and female brains[J]. Cell Rep, 2018, 24(10): 2773-2783. e6.
|
[36] |
Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia[J]. Nature, 2017, 541(7638): 481-487.
|
[37] |
Sousa C, Golebiewska A, Poovathingal SK, et al. Single-cell transcriptomics reveals distinct inflammation-induced microglia signatures[J]. EMBO reports, 2018, 19(11): e46171.
|
[38] |
Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression[J]. Nat Neurosci, 2016, 19(1): 20-27.
|
[39] |
Galatro TF, Holtman IR, Lerario AM, et al. Transcriptomic analysis of purified human cortical microglia reveals age-associated changes[J]. Nat Neurosci, 2017, 20(8): 1162-1171.
|
[40] |
Zhong S, Zhang S, Fan X, et al. A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex[J]. Nature, 2018, 555(7697): 524-528.
|
[41] |
Colonna M, Brioschi S. Neuroinflammation and neurodegeneration in human brain at single-cell resolution[J]. Nat Rev Immunol, 2020, 20(2): 81-82.
|
[42] |
Gosselin D, Skola D, Coufal NG, et al. An environment-dependent transcriptional network specifies human microglia identity[J]. Science, 2017, 356(6344): eaal3222.
|
[43] |
Darmanis S, Sloan SA, Zhang Y, et al. A survey of human brain transcriptome diversity at the single cell level[J]. Proc Natl Acad Sci USA, 2015, 112(23): 7285-7290.
|
[44] |
Sankowski R, Bottcher C, Masuda T, et al. Mapping microglia states in the human brain through the integration of high-dimensional techniques[J]. Nat Neurosci, 2019, 22(12): 2098-2110.
|
[45] |
Salter MW, Stevens B. Microglia emerge as central players in brain disease[J]. Nat Med, 2017, 23(9): 1018-1027.
|
[46] |
Benmamar-Badel A, Owens T, Wlodarczyk A. Protective microglial subset in development, aging, and disease: lessons from transcriptomic studies[J]. Front Immunol, 2020, 11: 430.
|
[47] |
Faissner S, Plemel JR, Gold R, et al. Progressive multiple sclerosis: from pathophysiology to therapeutic strategies[J]. Nat Rev Drug Discov, 2019, 18(12): 905-922.
|
[48] |
Stoeckius M, Hafemeister C, Stephenson W, et al. Simultaneous epitope and transcriptome measurement in single cells[J]. Nat Methods, 2017, 14(9): 865-868.
|