[1] |
Bowers CA, Riva-Cambrin J, Hertzler DA, et al. Risk factors and rates of bone flap resorption in pediatric patients after decompressive craniectomy for traumatic brain injury[J]. J Neurosurg Pediatr, 2013, 11(5): 526-532.
|
[2] |
Elsawaf Y, Anetsberger S, Luzzi S, et al. Early decompressive craniectomy as management for severe traumatic brain injury in the pediatric population: a comprehensive literature review[J]. World Neurosurg, 2020, 138: 9-18.
|
[3] |
Songara A, Gupta R, Jain N, et al. Early cranioplasty in patients with posttraumatic decompressive craniectomy and its correlation with changes in cerebral perfusion parameters and neurocognitive outcome[J]. World Neurosurg, 2016, 94: 303-308.
|
[4] |
Corallo F, Cola MD, Buono VL, et al. Early vs late cranioplasty: what is better?[J]. Int J Neurosci, 2017, 127(8): 688-693.
|
[5] |
Zanaty M, Chalouhi N, Starke RM, et al. Complications following cranioplasty: incidence and predictors in 348 cases[J]. J Neurosurg, 2015, 123(1): 182-188.
|
[6] |
Feroze AH, Walmsley GG, Choudhri O, et al. Evolution of cranioplasty techniques in neurosurgery: historical review, pediatric considerations, and current trends[J]. J Neurosurg, 2015, 123(4): 1098-1107.
|
[7] |
Canzi G, Talamonti G, Mazzoleni F, et al. Homologous banked bone grafts for the reconstruction of large cranial defects in pediatric patients[J]. J Craniofac Surg, 2018, 29(8): 2038-2042.
|
[8] |
Phillips Z, Taylor HO, Klinge PM, et al. Piezoelectric technology for pediatric autologous cranioplasty[J]. Cleft Palate Craniofac J, 2014, 51(3): 361-364.
|
[9] |
Beez T, Sabel M, Ahmadi SA, et al. Scanning electron microscopic surface analysis of cryoconserved skull bone after decompressive craniectomy[J]. Cell Tissue Bank, 2013, 15(1): 85-88.
|
[10] |
Corliss B, Gooldy T, Vaziri S, et al. Complications after in vivo and ex vivo autologous bone flap storage for cranioplasty: a comparative analysis of the literature[J]. World Neurosurg, 2016, 96: 510-515.
|
[11] |
Sahoo NK, Thakral A, Janjani L. Cranioplasty with autogenous frozen and autoclaved bone: management and treatment outcomes[J]. J Craniofac Surg, 2019, 30(7): 2069-2072.
|
[12] |
Klieverik VM, Miller KJ, Han KS, et al. Cranioplasties following craniectomies in children-a multicenter, retrospective cohort study[J]. Childs Nerv Syst, 2019, 35(9): 1473-1480.
|
[13] |
Rosinski CL, Chaker AN, Zakrzewski J, et al. Autologous bone cranioplasty: a retrospective comparative analysis of frozen and subcutaneous bone flap storage methods[J]. World Neurosurg, 2019, 131: e312-e320.
|
[14] |
Abu-Ghname A, Banuelos J, Oliver JD, et al. Outcomes and complications of pediatric cranioplasty: a systematic review[J]. Plast Reconstr Surg, 2019, 144(3): 433e-443e.
|
[15] |
Martin KD, Franz B, Kirsch M, et al. Autologous bone flap cranioplasty following decompressive craniectomy is combined with a high complication rate in pediatric traumatic brain injury patients[J]. Acta Neurochir, 2014, 156(4): 813-824.
|
[16] |
Rocque BG, Agee BS, Thompson EM, et al. Complications following pediatric cranioplasty after decompressive craniectomy: a multicenter retrospective study[J]. J Neurosurg Pediatr, 2018, 22(3): 225-232.
|
[17] |
Göttsche J, Fritzsche F, Kammler G, et al. A comparison between pediatric and adult patients after cranioplasty: aseptic bone resorption causes earlier revision in children[J]. J Neurol Surg A Cent Eur Neurosurg, 2020, 81(3): 227-232.
|
[18] |
Fan MC, Wang QL, Sun P, et al. Cryopreservation of autologous cranial bone flaps for cranioplasty: a large sample retrospective study[J]. World Neurosurg, 2018, 109: e853-e859.
|