切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2020, Vol. 06 ›› Issue (06) : 332 -337. doi: 10.3877/cma.j.issn.2095-9141.2020.06.003

所属专题: 文献

临床研究

颅脑外伤去骨瓣减压术后并发脑积水的预测模型建立与验证
卓健伟1, 刘国东1, 曹鑫意1, 疏龙飞1, 王玉海1,()   
  1. 1. 214044 无锡,解放军联勤保障部队第九〇四医院神经外科
  • 收稿日期:2020-07-28 出版日期:2020-12-15
  • 通信作者: 王玉海
  • 基金资助:
    江苏省卫健委重点科研项目(K2019018); 无锡市医学重点学科建设(ZDXK005)

Establishment and validation of a prediction model of post-traumatic hydrocephalus after decompressive craniotomy of traumatic brain injury

Jianwei Zhuo1, Guodong Liu1, Xinyi Cao1, Longfei Shu1, Yuhai Wang1,()   

  1. 1. Department of Neurosurgery, The 904 Hospital of the Joint Service Support Force of the PLA, Wuxi 214044, China
  • Received:2020-07-28 Published:2020-12-15
  • Corresponding author: Yuhai Wang
  • About author:
    Corresponding author: Wang Yuhai, Email:
引用本文:

卓健伟, 刘国东, 曹鑫意, 疏龙飞, 王玉海. 颅脑外伤去骨瓣减压术后并发脑积水的预测模型建立与验证[J/OL]. 中华神经创伤外科电子杂志, 2020, 06(06): 332-337.

Jianwei Zhuo, Guodong Liu, Xinyi Cao, Longfei Shu, Yuhai Wang. Establishment and validation of a prediction model of post-traumatic hydrocephalus after decompressive craniotomy of traumatic brain injury[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2020, 06(06): 332-337.

目的

基于临床资料建立并验证创伤性颅脑损伤(TBI)去骨瓣减压(DC)术后并发脑积水(PTH)的预测模型。

方法

选取解放军联勤保障部队第九〇四医院神经外科自2010年1月至2019年12月诊治的符合纳入条件的451例TBI患者,随访6个月后根据PTH诊断标准分为PTH组(127例)和无PTH组(324例),分析与之可能相关的15项因素。采用最小绝对收缩和选择算子(LASSO)回归降低数据维度和筛选预测因子。纳入多因素Logistic回归分析后建立预测模型并制作列线图,受试者工作特征曲线(ROC)和校准曲线用于检测模型的区分度和拟合优度,决策曲线分析(DCA)评价模型的临床适用性。

结果

LASSO回归筛选出5个预测因子并用于构成模型。经过验证,模型的ROC曲线下面积为0.762。校准曲线显示预测概率与实际概率有很好的一致性。DCA表明模型在一定范围内的临床适用性。

结论

本研究建立一个PTH的预测模型,具有良好的区分度、拟合优度和临床适用性,有利于高危患者的识别和针对性随访干预。

Objective

To establish and verify the prediction model of post-traumatic hydrocephalus (PTH) after decompressive craniotomy (DC) of traumatic brain injury (TBI) based on clinical data.

Methods

Four hundred and fifty-one eligible TBI cases admitted to Neurosurgery Department of the 904st Hospital of the Joint Service Support Force of the PLA from January 2010 to December 2019 were collected. After 6 months follow-up, according to the diagnostic criteria of PTH, the patients were divided into PTH group (n=127) and non-PTH group (n=324), and 15 factors related to PTH were analyzed. The least absolute shrinkage and selection operator (LASSO) regression was used to reduce the data dimension and filter the prediction factors. The multivariate logistic regression was used to establish the prediction model and constructe nomogram. Receiver operating characteristic (ROC) curve and calibration curve are respectively used to detect the discrimination and goodness of fit of the model. Decision curve analysis (DCA) was used to evaluate the clinical applicability of the prediction model.

Results

Five predictors were screened out by LASSO regression and constituted a model. After verification, the area under the curve of ROC was 0.762. The calibration curve showed that the predicted probability was in good agreement with the actual probability. DCA showed the clinical applicability of the model in a certain range.

Conclusion

This study established a prediction model of PTH, which has good differentiation, goodness of fit and clinical applicability, and is conducive to the the identification of high-risk patients and targeted follow-up intervention.

表1 451例TBI患者DC术后发生PTH的单因素分析
项目 无PTH组(n=324) PTH组(n=127) χ2/Z P
性别[例(%)]     0.125 0.723
  240(74.1) 92(72.4)    
  84(25.9) 35(27.6)    
年龄[岁,M(QR)] 48.0(26.0) 50.0(24.0) -1.460 0.144
开放性TBI[例(%)]     0.006 0.938
  45(13.9) 18(14.2)    
  279(86.1) 109(85.8)    
高血压[例(%)]     0.863 0.353
  59(18.2) 28(22.0)    
  265(81.8) 99(78.0)    
糖尿病[例(%)]     0.769 0.380
  14(4.3) 8(6.3)    
  310(95.7) 119(93.7)    
术前GCS评分[分,例(%)]     13.453 <0.001
  ≤6 179(55.2) 94(74.0)    
  >6 145(44.8) 33(26.0)    
术前Fisher分级[例(%)]     25.147 <0.001
  Ⅰ级 125(38.6) 27(21.3)    
  Ⅱ级 106(32.7) 33(26.0)    
  Ⅲ级 56(17.3) 36(28.3)    
  Ⅳ级 37(11.4) 31(24.4)    
脑室出血[例(%)]     6.492 0.011
  18(5.6) 16(12.6)    
  306(94.4) 111(87.4)    
脑中线移位[cm,例(%)]     1.258 0.533
  <0.5 88(27.2) 28(22.0)    
  0.5~1 142(43.8) 59(46.5)    
  >1 94(29.0) 40(31.5)    
去骨瓣减压[例(%)]     21.759 <0.001
  单侧 281(86.7) 86(67.7)    
  双侧 43(13.3) 41(32.3)    
骨窗疝[例(%)]     16.671 <0.001
  40(12.3) 36(28.3)    
  284(87.7) 91(71.7)    
颅内感染[例(%)]     12.159 <0.001
  56(17.3) 41(32.3)    
  268(82.7) 86(67.7)    
术后昏迷时间[d,例(%)]     54.707 <0.001
  <7 134(41.4) 16(12.6)    
  7~30 108(33.3) 35(27.6)    
  >30 82(25.3) 76(59.8)    
硬膜下积液[例(%)]     46.224 <0.001
  202(62.3) 48(37.8)    
  同侧 74(22.8) 24(18.9)    
  对侧 10(3.1) 6(4.7)    
  双侧 28(8.6) 32(25.2)    
  半球间 10(3.2) 17(13.4)    
去骨瓣面积[cm2M(QR)] 81.4(32.4) 91.5(63.7) -3.518 <0.001
图1 基于LASSO回归的因素变量选择
图2 基于5个预测因子建立的预测TBI患者DC术后发生PTH的列线图
表2 TBI患者DC术后发生PTH的Logistic回归分析
图3 预测模型的受试者工作特征曲线
图4 预测模型的校准曲线
图5 预测模型的决策曲线分析
[1]
Gopalakrishnan MS, Shanbhag NC, Shukla DP, et al. Complications of decompressive craniectomy[J]. Front Neurol, 2018, 9: 977.
[2]
De Bonis P, Sturiale CL, Anile C, et al. Decompressive craniectomy, interhemispheric hygroma and hydrocephalus: a timeline of events?[J]. Clin Neurol Neurosurg, 2013, 115(8): 1308-1312.
[3]
Honeybul S, Ho KM. Incidence and risk factors for post-traumatic hydrocephalus following decompressive craniectomy for intractable intracranial hypertension and evacuation of mass lesions[J]. J Neurotrauma, 2012, 29(10): 1872-1878.
[4]
Ki HJ, Lee HJ, Lee HJ, et al. The risk factors for hydrocephalus and subdural hygroma after decompressive craniectomy in head injured patients[J]. J Korean Neurosurg Soc, 2015, 58(3): 254-261.
[5]
Chen H, Yuan F, Chen SW, et al. Predicting posttraumatic hydrocephalus: derivation and validation of a risk scoring system based on clinical characteristics[J]. Metab Brain Dis, 2017, 32(5): 1427-1435.
[6]
胡世颉,李兵,费舟.创伤性脑损伤术后并发脑积水的临床经验总结[J].中华神经创伤外科电子杂志, 2018, 4(1): 16-19.
[7]
王雷平,吴崇光,姚军.颅脑损伤去骨瓣减压术后并发创伤后脑积水的危险因素[J].中华创伤杂志, 2014, 30(4): 307-310.
[8]
Fisher CM, Kistler JP, Davis JM. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning[J]. Neurosurgery, 1980, 6(1): 1-9.
[9]
Kaen A, Jimenez-Roldan L, Alday R, et al. Interhemispheric hygroma after decompressive craniectomy: does it predict posttraumatic hydrocephalus?[J]. J Neurosurg, 2010, 113(6): 1287-1293.
[10]
Yuan Q, Wu X, Yu J, et al. Subdural hygroma following decompressive craniectomy or non-decompressive craniectomy in patients with traumatic brain injury: clinical features and risk factors[J]. Brain Inj, 2015, 29(7-8): 971-980.
[11]
Honeybul S, Ho KM. Long-term complications of decompressive craniectomy for head injury[J]. J Neurotrauma, 2011, 28(6): 929-935.
[12]
Kondziella D, Sonnewald U, Tullberg M, et al. Brain metabolism in adult chronic hydrocephalus[J]. J Neurochem, 2008, 106(4): 1515-1524.
[13]
Kim JH, Ahn JH, Oh JK, et al. Factors associated with the development and outcome of hydrocephalus after decompressive craniectomy for traumatic brain injury[J]. Neurosurg Rev, 2020, 1(17): e1-e8.
[14]
Tibshirani R. The lasso method for variable selection in the cox model[J]. Stat Med, 1997, 16(4): 385-395.
[15]
Tian HL, Xu T, Hu J, et al. Risk factors related to hydrocephalus after traumatic subarachnoid hemorrhage[J]. Surg Neurol, 2008, 69(3): 241-246.
[16]
Mohd Nor MA, Abdul Rahman NA, Adnan JS. Post-traumatic hydrocephalus[J]. Malays J Med Sci, 2013, 20(1): 95-96.
[17]
Ding J, Guo Y, Tian H. The influence of decompressive craniectomy on the development of hydrocephalus: a review[J]. Arq Neuropsiquiatr, 2014, 72(9): 715-720.
[18]
Waziri A, Fusco D, Mayer SA, et al. Postoperative hydrocephalus in patients undergoing decompressive hemicraniectomy for ischemic or hemorrhagic stroke[J]. Neurosurgery, 2007, 61(3): 489-494.
[19]
刘佰运.创伤性脑积水的诊治[J].中华神经创伤外科电子杂志, 2018, 4(3): 129-131.
[20]
杨勇,王鹏,李巧玉,等.去骨瓣减压术后骨窗疝的成因及防治[J].江苏医药, 2013, 39(4): 421-423.
[21]
Honeybul S, Ho KM. Decompressive craniectomy for severe traumatic brain injury: the relationship between surgical complications and the prediction of an unfavourable outcome[J]. 2014, 45(9): 1332-1339.
[22]
Fotakopoulos G, Tsianaka E, Siasios G, et al. Posttraumatic hydrocephalus after decompressive craniectomy in 126 patients with severe traumatic brain injury[J]. J Neurol Surg A Cent Eur Neurosurg, 2016, 77(2): 88-92.
[23]
Vickers AJ, Cronin AM, Elkin EB, et al. Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers[J]. BMC Med Inform Decis Mak, 2008, 8(1): 53.
[24]
Balachandran VP, Gonen M, Smith JJ, et al. Nomograms in oncology: more than meets the eye[J]. Lancet Oncol, 2015, 16(4): 173-180.
[25]
Kammersgaard LP, Linnemann M, Tibæk M. Hydrocephalus following severe traumatic brain injury in adults. Incidence, timing, and clinical predictors during rehabilitation[J]. NeuroRehabilitation, 2013, 33(3): 473-480.
[26]
De Bonis P, Pompucci A, Mangiola A, et al. Post-traumatic hydrocephalus after decompressive craniectomy: an underestimated risk factor[J]. J Neurotrauma, 2010, 27(11): 1965-1970.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[3] 蒲彦婷, 吴翠先, 兰玉梅. 类风湿关节炎患者骨质疏松症风险预测列线图模型构建[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 596-603.
[4] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[5] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[6] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[7] 张瑜, 姜梦妮. 基于DWI信号值构建局部进展期胰腺癌放化疗生存获益预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 657-664.
[8] 王贝贝, 崔振义, 王静, 王晗妍, 吕红芝, 李秀婷. 老年股骨粗隆间骨折患者术后贫血预测模型的构建与验证[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 355-362.
[9] 单良, 刘怡, 于涛, 徐丽. 老年股骨颈骨折术后患者心理弹性现状及影响因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 294-300.
[10] 王如海, 王绅, 张敏, 李春, 韩超, 于强, 胡海成, 李习珍. 重型创伤性脑损伤患者去骨瓣减压术后短期死亡风险的影响因素分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 285-291.
[11] 孙晗, 于冰, 武侠, 周熙朗. 基于循环肿瘤DNA 甲基化的结直肠癌筛查预测模型的构建与验证[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 500-506.
[12] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[13] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[14] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[15] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?