切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2019, Vol. 05 ›› Issue (05) : 284 -288. doi: 10.3877/cma.j.issn.2095-9141.2019.05.007

所属专题: 文献

临床研究

剖面3D打印技术辅助微导管塑形在颅内动脉瘤介入栓塞术中的应用
刘权1, 张绪新1, 李彦钊1, 邓东风1,()   
  1. 1. 116001 大连,大连大学附属中山医院神经外科
  • 收稿日期:2019-08-30 出版日期:2019-10-15
  • 通信作者: 邓东风
  • 基金资助:
    大连市卫生局课题(1811121)

Application of profile 3D printing assisted microcatheter shaping in interventional embolization of intracranial aneurysms

Quan Liu1, Xuxin Zhang1, Yanzhao Li1, Dongfeng Deng1,()   

  1. 1. Department of Neurosurgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
  • Received:2019-08-30 Published:2019-10-15
  • Corresponding author: Dongfeng Deng
  • About author:
    Corresponding author: Deng Dongfeng, Email:
引用本文:

刘权, 张绪新, 李彦钊, 邓东风. 剖面3D打印技术辅助微导管塑形在颅内动脉瘤介入栓塞术中的应用[J]. 中华神经创伤外科电子杂志, 2019, 05(05): 284-288.

Quan Liu, Xuxin Zhang, Yanzhao Li, Dongfeng Deng. Application of profile 3D printing assisted microcatheter shaping in interventional embolization of intracranial aneurysms[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2019, 05(05): 284-288.

目的

探讨剖面3D打印技术辅助微导管塑形在颅内动脉瘤介入栓塞术中的应用及效果。

方法

选取大连大学附属中山医院神经外科自2015年5月至2019年5月收治的未破裂经行头颈部CTA示颈内动脉后交通动脉瘤患者60例,采取随机抽签方式分为试验组和对照组,每组30例。试验组采用剖面3D打印技术辅助术前塑形微导管栓塞治疗颅内动脉瘤,对照组采用传统介入栓塞治疗颅内动脉瘤。比较2组患者术前准备时间、术中操作时间、住院天数以及改良Rankin量表(mRs)评分评估患者预后。

结果

试验组术前微导管均达到精准塑形,介入栓塞过程顺利,预后良好,术前准备时间(1.837±0.404)h,术中操作时间(30.700±2.680)min,住院天数(6.970±1.450)d,mRs评分为1[0,2]分。而对照组中2例微导管未到位,栓塞失败,1例栓塞时间超过60 min,1例患者因出现肺内感染、右肺大量胸腔积液行右侧胸腔闭式引流术导致住院天数超过30 d,术前准备时间(2.323±0.261)min,术中操作时间(49.530±4.297)min,住院天数(9.500±4.049)d,mRs评分为2[0,5]分。2组术前准备时间、术中操作时间、住院天数以及mRs评分差异有统计学意义(P<0.05)。

结论

应用剖面3D打印技术辅助术前塑形微导管应用于颅内动脉瘤介入栓塞治疗中,不仅便于精准塑形,同时也能降低患者术后并发症的发生率,更能促进神经外科教学模式改革。

Objective

To investigate the application and effect of profile 3D printing assisted microcatheter shaping in interventional embolization of intracranial aneurysms.

Methods

Sixty cases of unruptured posterior communicating carotid artery aneurysms showed by head and neck CTA in the Department of Neurosurgery, Affiliated Zhongshan Hospital of Dalian University from May 2015 to May 2019 were selected. The patients were divided into experimental group and control group by random lottery, with 30 cases in each group. The experimental group used profile 3D printing technology to assist preoperative shaping microcatheter embolization for intracranial aneurysms treating, while the control group used traditional interventional embolization for intracranial aneurysms treating. Preoperative preparation time, intraoperative operation time, length of stay and mRs scores of the 2 groups were compared to evaluate the prognosis of the patients.

Results

The preoperative microcatheter in the experimental group achieved accurate shaping, the interventional embolization process was smooth, and the prognosis was good, the preoperative preparation time was (1.837±0.404) h, the intraoperative operation time was (30.700±2.680) min, the length of stay was (6.970±1.450) d, and the mRs score was 1[0, 2]. While the control group of 30 cases, 2 embolisms failed, for their microcatheter was not in place; 1 case of embolization lasted more than 60 min, because of lung infection; 1 case of patients characterized by a large number of pleural effusion in the right lung was performed closed drainage, which caused more than 30 hospitalization days, preoperative preparation time was (2.323±0.261) min, intraoperative operating time was (49.530±4.297) min, hospitalization days was (9.500±4.049) d. The mRs score was 2[0, 5]. There were statistically significant differences in preoperative preparation time, intraoperative operation time, length of stay and mRs scores between the two groups (P<0.05).

Conclusion

The application of profile 3D printing technology to assist the application of preoperative shaping microcatheter in the interventional embolization treatment of intracranial aneurysms is not only convenient for accurate shaping, but also can reduce the incidence of postoperative complications of patients and promote the reform of neurosurgery teaching mode.

表1 2组不同微导管塑形方法对颅内动脉瘤栓塞术评价指标的影响
图1 左侧颈内动脉后交通动脉瘤患者术前术后资料
[1]
谭衍,边远,陆弘盈,等. 3D打印技术在颅内动脉瘤介入栓塞治疗中的应用[J].中国医学装备, 2017, 14(12): 64-67.
[2]
Li H,Pan R,Wang H, et al. Clipping versus coiling for ruptured intracranial aneurysms: a systematic review and meta-analysis[J]. Stroke, 2013, 44(1): 29-37.
[3]
张隆辉,高天,张士永,等.颅内未破动脉瘤的研究进展[J].介入放射学杂志, 2016, 25(9): 829-833.
[4]
Namba K,Higaki A,Kaneko N, et al. Microcatheter shaping for intracranial aneurysm coiling using the 3-dimensional printing rapid prototyping technology: preliminary result in the first 10 consecutive cases[J]. World Neurosurg, 2015, 84(1): 178-186.
[5]
Wang JL,Yuan ZG,Qian GL, et al. 3D printing of intracranial aneurysm based on intracranial digital subtraction angiography and its clinical application[J]. Medicine (Baltimore), 2018, 97(24): e11103.
[6]
Gölitz P,Struffert T,Knossalla F, et al. Angiographic CT with intravenous contrast injection compared with conventional rotational angiography in the diagnostic work-up of cerebral aneurysms[J]. AJNR Am J Neuroradiol, 2012, 33(5): 982-987.
[7]
Serafin Z,Strzeniewski P,Lasek W, et al. Follow-up after embolization of ruptured intracranial aneurysms: a prospective comparison of two-dimensional digital subtraction angiography, three-dimensional digital subtraction angiography, and time-of-flight magnetic resonance angiography[J]. Neuroradiology, 2012, 54(11): 1253-1260.
[8]
Brilstra EH,Rinkel GJ,van der Graaf Y, et al. et al. Treatment of intracranial aneurysms by embolization with coils: a systematic review[J]. Stroke, 1999, 30(2): 470-476.
[9]
Henkes H,Fischer S,Weber W, et al. Endovascular coil occlusion of 1811 intracranial aneurysms: early angiographic and clinical results[J]. Neurosurgery, 2004, 54(2): 268-280.
[10]
Koebbe CJ,Veznedaroglu E,Jabbour P, et al. Endovascular management of intracranial aneurysms: current experience and future advances[J]. Neurosurgery, 2006, 59 (5 Suppl 3): S93-S102.
[11]
Molyneux A,Kerr R. International Subarachnoid Aneurysm Trial(ISAT) Collaborative Group, et al. International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomized trial[J]. J Stroke Cerebrovasc Dis, 2002, 11(6): 304-314.
[12]
徐超,王波,韩建一,等. 3D打印辅助微导管塑形在颅内动脉瘤栓塞术中应用[J].介入放射学杂志, 2017, 26(1): 1-5.
[13]
刘子燕,王荣耀,李艳明,等. 3D打印技术在颅内动脉瘤介入栓塞术中的应用[J].中外医学研究, 2017, 15(29): 71-73.
[14]
Spottiswoode BS,van den Heever DJ,Chang Y, et al. Preoperative three-dimensional model creation of magnetic resonance brain images as a tool to assist neurosurgical planning[J]. Stereotact Funct Neurosurg, 2013, 91(3): 162-169.
[15]
蒙彩艳,黄曲云.综合护理在颅内动脉瘤患者行介入栓塞术中的应用研究[J].右江民族医学院学报, 2017, 39(4): 335-338.
[16]
Hoch E,Tovar GE,Borchers K. Bioprinting of artificial blood vessels: current approaches towards a demanding goal[J]. Eur J Cardiothorac Surg, 2014, 46(5): 767-778.
[17]
Seol Y,Kang TY,Cho DW. Solid freeform fabrication technology applied to tissue engineering with various biomaterials[J]. Soft Matter, 2012, 8(6): 1730-1735.
[18]
Anderson JR,Thompson WL,Alkattan AK, et al. Three-dimensional printing of anatomically accurate, patient specific intracranial aneurysm models[J]. J Neurointerv Surg, 2015, 8(5): 517-520.
[19]
Sodian R,Schmauss D,Schmitz C, et al. 3-dimensional printing of models to create custom-made devices for coil embolization of an anastomotic leak after aortic arch replacement[J]. Ann Thorac Surg, 2009, 88(3): 974-978.
[20]
Namba K,Higaki A,Kaneko N, et al. Microcatheter shaping for intracranial aneurysm coiling using the 3-dimensional printing rapid prototyping technology: preliminary result in the first 10 consecutive cases[J]. World Neurosurg, 2015, 84(1): 178-186.
[21]
Ishibashi T,Takao H,Suzuki T. Tailor-made shaping of microcatheters using three-dimensional printed vessel models for endovascular coil embolization[J]. Comput Biol Med, 2016, 77: 59-63.
[22]
Messier U,Hundt C,Wiesmann M, et al. Three-dimensional reconstructed rotational digital subtraction angiography in planning treatment of intracranial aneurysms[J]. Eur Radiol, 2000, 10(4): 564-568.
[1] 吉春冬, 杨璐, 邱实, 刘凯, 薛荣波. 3D打印技术在前列腺癌外科手术实践教学中的运用[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(05): 456-458.
[2] 刘唯佳, 赵泳冰, 李新哲, 徐征国, 陶玥颖. 食管癌致咯血救治成功一例报告[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 292-294.
[3] 黎鹏程, 黄谦亦, 张逵, 范润金, 尚彬. 手术切除颅内巨大假性动脉瘤一例报道并文献复习[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 123-125.
[4] 许明伟, 许民辉. 组合塑形夹闭联合低流量搭桥治疗复杂大脑中动脉多发动脉瘤[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 62-64.
[5] 潘鹏宇, 孔睿, 李侑埕, 李佳朔, 杨新宇, 张文旭, 朱泽超, 田学实, 闻亮, 朱廷准, 梁国标. 无创脑电磁扰动在蛛网膜下腔出血术后脱水治疗中的应用研究[J]. 中华神经创伤外科电子杂志, 2022, 08(06): 351-355.
[6] 李晓东. 翼点锁孔入路夹闭前循环动脉瘤[J]. 中华神经创伤外科电子杂志, 2022, 08(04): 255-256.
[7] 周柏臻, 李春雨, 林绍仪, 刘付滴, 徐万宏. 3D打印技术辅助肩胛骨改良Judet入路手术治疗肩胛骨骨折的疗效[J]. 中华老年骨科与康复电子杂志, 2022, 08(03): 172-176.
[8] 魏云, 李晓东. 脑动静脉畸形合并颅内动脉瘤的手术治疗[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(06): 382-383.
[9] 李田利, 张照龙, 孙成建, 刘国平, 谢宜兴, 赵晓龙, 邵黎明, 郑璇, 王长鑫, 徐锐. 基于血流动力学、血脂及外周血炎症标志物的眼段动脉瘤破裂风险相关研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(02): 78-83.
[10] 陈中国, 万宇婷, 陈卓萍, 陈晓君, 袁亚君. CPR技术在颅内血流导向装置植入术中的应用[J]. 中华介入放射学电子杂志, 2023, 11(03): 247-250.
[11] 李敬峰, 赵林波, 倪恒, 贾振宇, 曹月洲, 施海彬, 刘圣. 颅内动脉瘤破裂合并脑室出血的危险因素分析[J]. 中华介入放射学电子杂志, 2022, 10(04): 404-407.
[12] 魏胜超, 邓堂, 廖勇, 钟士杰, 史键山, 金桂云, 王剑锋. 海藻酸盐微球栓塞剂的制备及应用进展[J]. 中华介入放射学电子杂志, 2022, 10(02): 202-208.
[13] 庄宗, 祝琦, 那世杰, 刘涛, 凌海平, 张玉华, 曹博强, 杭春华, 张庆荣. 破裂性小脑后下动脉远端动脉瘤的个体化治疗策略[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 200-206.
[14] 连万成, 姚京, 吴泽涛, 何毅, 伍健明, 张猛. 血流导向装置治疗颅内未破裂动脉瘤的疗效与影响因素分析[J]. 中华脑血管病杂志(电子版), 2023, 17(01): 31-36.
[15] 付永鹏, 拉巴索朗, 马强, 陈群超, 郑裕峰, 吴蕻, 郑圆杰, 胡婧, 于洮, 张东. 人工智能辅助CT血管成像脑血管重建在基层医院颅内动脉瘤诊断中的应用[J]. 中华脑血管病杂志(电子版), 2023, 17(01): 26-30.
阅读次数
全文


摘要