切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2019, Vol. 05 ›› Issue (03) : 163 -167. doi: 10.3877/cma.j.issn.2095-9141.2019.03.008

所属专题: 文献

基础研究

MicroRNA-182靶向抑制TLR4后减轻缺氧诱导的小胶质细胞炎症反应
汪继1, 赵浩1, 陈秀芬1, 肖宗宇2, 朱健伟3, 陈文锦1, 张丽1, 徐如祥1,()   
  1. 1. 100700 北京,解放军总医院第七医学中心附属八一脑科医院
    2. 810000 西宁,青海大学附属医院神经外科
    3. 646000 泸州,西南医科大学附属中医医院神经外科
  • 收稿日期:2018-12-04 出版日期:2019-06-15
  • 通信作者: 徐如祥
  • 基金资助:
    国家自然科学基金(81671189); 全军"十三五"军事医学创新工程项目(16CXZ001)

MicroRNA-182 targets inhibition of TLR4 and reduces hypoxia-induced microglial inflammatory response

Ji Wang1, Hao Zhao1, Xiufen Chen1, Zongyu Xiao2, Jianwei Zhu3, Wenjin Chen1, Li Zhang1, Ruxiang Xu1,()   

  1. 1. Affiliated Bayi Brain Hospital, The Seventh Medical Center of the PLA General Hospital, Beijing 100700, China
    2. Department of Neurosurgery, Affiliated Hospital of Qinghai University, Xining 810000, China
    3. Department of Neurosurgery, Affiliated TCM Hospital of Southwest Medical University, Luzhou 646000, China
  • Received:2018-12-04 Published:2019-06-15
  • Corresponding author: Ruxiang Xu
  • About author:
    Corresponding author: Xu Ruxiang, Email:
引用本文:

汪继, 赵浩, 陈秀芬, 肖宗宇, 朱健伟, 陈文锦, 张丽, 徐如祥. MicroRNA-182靶向抑制TLR4后减轻缺氧诱导的小胶质细胞炎症反应[J]. 中华神经创伤外科电子杂志, 2019, 05(03): 163-167.

Ji Wang, Hao Zhao, Xiufen Chen, Zongyu Xiao, Jianwei Zhu, Wenjin Chen, Li Zhang, Ruxiang Xu. MicroRNA-182 targets inhibition of TLR4 and reduces hypoxia-induced microglial inflammatory response[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2019, 05(03): 163-167.

目的

研究microRNA-182(miR-182)靶向Toll样受体4(TLR4)对小胶质细胞炎症反应的影响。

方法

利用转染试剂Lipofectamine 2000进行小胶质细胞的miR-182、小干扰TLR4 RNA(siTLR4)以及TLR4(ORF)过表达质粒的转染;通过氧糖剥夺处理,模拟缺血缺氧环境;通过荧光素酶基因检测报告检测TLR4是否是miR-182的直接结合靶点;通过Western blot、RT-PCR、ELISA检测mRNA以及蛋白的相对表达量。

结果

miR-182与TLR4在缺氧条件下小胶质细胞中的表达具有相关性,TLR4是miR-182的直接作用靶点,miR-182可以抑制TLR4的表达,同时降低小胶质细胞的炎症因子(TNF-α、IL-6、IL-1β)的释放。

结论

miR-182通过靶向抑制TLR4的表达来抑制缺氧诱导的小胶质细胞炎症反应。

Objective

To study the effect of microRNA-182 (miR-182) targeting Toll-like receptor 4 (TLR4) on microglial inflammatory response.

Methods

Microglial cells were transfected with miR-182, small interfering TLR4 RNA (siTLR4) and TLR4(ORF) overexpression plasmids using transfection reagent Lipofectamine 2000. Simulating ischemia and hypoxia by OGD treatment. Detection of TLR4 as a direct target of miR-182 by luciferase reporter assay. Detection of mRNA and relative expression of protein by RT-PCR, Western blot and ELISA.

Results

miR-182 is associated with the expression of TLR4 in microglia under hypoxic conditions, TLR4 is a direct target of miR-182, and miR-182 can inhibit the expression of TLR4, and reduce the release of inflammatory factors (TNF-α, IL-6, IL-1β) from microglia

Conclusion

miR-182 inhibits hypoxia-induced microglial inflammatory response by targeting inhibition of TLR4 expression.

图1 OGD处理不同时间后小胶质细胞miR-182、TLR4 mRNA和蛋白相对表达量
图2 荧光素酶基因测定报告结果
图3 小胶质细胞转染miR-182后TLR4的表达情况
图4 小胶质细胞转染siTLR4、TLR4过表达质粒后TLR4表达情况
图5 小胶质细胞的炎症因子表达水平
[1]
Graeber MB, Streit WJ. Microglia: biology and pathology[J]. Acta Neuropathol, 2010, 119(1): 89-105.
[2]
Amantea D, Nappi G, Bernardi G, et al. Post-ischemic brain damage: pathophysiology and role of inflammatory mediators[J]. FEBS J, 2009, 276(1): 13-26.
[3]
Gao HM, Hong JS. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression[J]. Trends Immunol, 2008, 29(8): 357-365.
[4]
Zhang L, Dong LY, Li YJ, et al. The microRNA miR-181c controls microglia-mediated neuronal apoptosis by suppressing tumor necrosis factor[J]. J Neuroinflammation, 2012, 9: 211.
[5]
Zhang L, Dong L, Li Y, et al. miR-21 represses FasL in microglia and protects against microglia-mediated neuronal cell death following hypoxia/ischemia[J]. Glia, 2012, 60(12): 1888-1895.
[6]
Lee YJ, Johnson KR, Hallenbeck JM. Global protein conjugation by ubiquitin-like-modifiers during ischemic stress is regulated by microRNAs and confers robust tolerance to ischemia[J]. PLoS One, 2012, 7(10): e47787.
[7]
Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response[J]. Nature, 2000, 406(6797): 782-787.
[8]
Cho DC, Cheong JH, Yang MS, et al. The effect of minocycline on motor neuron recovery and neuropathic pain in a rat model of spinal cord injury[J]. J Korean Neurosurg Soc, 2011, 49(2): 83-91.
[9]
Chan PH. Role of oxidants in ischemic brain damage[J]. Stroke, 1996, 27(6): 1124-1129.
[10]
Rock FL, Hardiman G, Timans JC, et al. A family of human receptors structurally related to Drosophila Toll[J]. Proc Natl Acad Sci USA, 1998, 95(2): 588-593.
[11]
Dantzer R, O’Connor JC, Freund GG, et al. From inflammation to sickness and depression: when the immune system subjugates the brain[J]. Nat Rev Neurosci, 2008, 9(1): 46-55.
[12]
Yao L, Kan EM, Lu J, et al. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia[J]. J Neuroinflammation, 2013, 10: 23.
[13]
Ding X, Sun B, Huang J, et al. The role of miR-182 in regulating pineal ClOCK expression after hypoxia-ischemia brain injury in neonatal rats[J]. Neurosci Lett, 2015, 591: 75-80.
[14]
Lee SY, Lee S, Choi E, et al. Small molecule-mediated up-regulation of microRNA targeting a key cell death modulator BNIP3 improves cardiac function following ischemic injury[J]. Sci Rep, 2016, 6(1): 23472.
[15]
Jiang W, Liu G, Tang W. MicroRNA-182-5p ameliorates liver ischemia-reperfusion injury by suppressing Toll-like receptor 4[J]. Transplant Proc, 2016, 48(8): 2809-2814.
[16]
Uhlmann S, Mracsko E, Javidi E, et al. Genome-wide analysis of the circulating mirnome after cerebral ischemia reveals a reperfusion-induced microRNA cluster[J]. Stroke, 2017, 48(3): 762-769.
[1] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[2] 史孟杰, 贺仕才, 刘斐, 闫燕, 代毅, 王辉. 对miR-206在大鼠下肢缺血再灌注损伤过程中炎症反应的影响分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 249-255.
[3] 罗皓天, 陈丹莹, 王伟财, 周晨. 基质细胞衍生因子1/CXC趋化因子受体4轴在骨免疫相关疾病中的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 218-227.
[4] 张星哲, 郑秉暄, 邓格, 豆猛, 石玉婷, 卫田, 郭映聪, 韩锋, 赵艳龙, 丁晨光, 田普训. 髓源性抑制细胞通过抑制炎症反应减轻小鼠肾脏缺血再灌注损伤[J]. 中华移植杂志(电子版), 2023, 17(01): 42-46.
[5] 疏文志, 杨梦凡, 潘斌华, 苏仁义, 林祖源, 杨墨丹, 张镇胜, 宋一粟, 卢正阳, 郑树森, 徐骁, 魏绪勇. 人羊膜上皮干细胞通过调节M1/M2型巨噬细胞极化减轻小鼠肝脏缺血再灌注损伤的实验研究[J]. 中华移植杂志(电子版), 2023, 17(01): 36-41.
[6] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[7] 刘小燕, 龙乾发, 席俊秀, 杜明皓, 黄晓欢. 细胞外囊泡介导的胶质细胞交互作用对神经炎症的调节意义及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 235-241.
[8] 邓春文, 陈嵩, 钟裴, 闵师强, 万健. LncRNA CRNDE通过miR-181a-5p/SOX6轴调节脂多糖诱导人肺泡上皮细胞的炎症反应和细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 129-136.
[9] 许磊, 孙杰, 陈先志, 张家泉, 李旺勇, 冯其柱, 王琦. 血液净化治疗在高血脂性重症胰腺炎中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 464-468.
[10] 刁世童, 王伊帆, 董润, 彭劲民, 何淑华, 翁利, 杜斌. eSOFA,qSOFA,SIRS对于脓毒症患者预后预测价值的比较:一项基于非ICU住院患者的前瞻性队列研究[J]. 中华重症医学电子杂志, 2023, 09(02): 143-148.
[11] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[12] 高海杰, 王宝军. Toll样受体2与缺血性脑卒中关系的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(01): 57-61.
[13] 张赟辉, 罗军, 刘栗丽, 汪宏, 耿克明. 腹膜透析与血液透析对老年终末期肾病患者营养状况及炎症反应的影响[J]. 中华临床医师杂志(电子版), 2023, 17(04): 419-423.
[14] 何惠娴, 肖勇, 纪燕琴. 三角球囊与金属圆形节育器在中重度宫腔粘连术后患者中的应用比较[J]. 中华临床医师杂志(电子版), 2023, 17(02): 159-164.
[15] 刘天姿, 王宝军. Toll样受体4在阿尔茨海默病中的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 404-409.
阅读次数
全文


摘要