切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2019, Vol. 05 ›› Issue (01) : 56 -59. doi: 10.3877/cma.j.issn.2095-9141.2019.01.012

所属专题: 文献

综述

B7-H3在胶质瘤免疫研究中的新进展
赵嘉银1, 范益民1,()   
  1. 1. 030000 太原,山西医科大学第一附属医院神经外科
  • 收稿日期:2018-09-04 出版日期:2019-02-15
  • 通信作者: 范益民

New progress of B7-H3 in glioma immunity

Jiayin Zhao1, Yimin Fan1,()   

  1. 1. Department of Neurosurgery, the First Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China
  • Received:2018-09-04 Published:2019-02-15
  • Corresponding author: Yimin Fan
  • About author:
    Corresponding author: Fan Yimin, Email:
引用本文:

赵嘉银, 范益民. B7-H3在胶质瘤免疫研究中的新进展[J/OL]. 中华神经创伤外科电子杂志, 2019, 05(01): 56-59.

Jiayin Zhao, Yimin Fan. New progress of B7-H3 in glioma immunity[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2019, 05(01): 56-59.

B7-H3作为B7-CD28检查点通路的新成员,在肿瘤免疫过程中起到了极其重要的作用。大量研究表明,B7-H3在多数肿瘤中呈高表达,并与肿瘤的免疫逃逸相关联,且与肿瘤的黏连、侵袭和转移存在密不可分的关系。尽管B7-H3相关受体尚未明确,但是,针对其相关的8H9抗体已在临床上得到了初步性的成功。本文现围绕抗B7-H3在胶质瘤免疫研究中的最新进展综述如下。

As a new member of B7-CD28 checkpoint pathway, B7-H3 plays an important role in tumor immunity. A large number of studies have shown that B7-H3 is highly expressed in most tumors and is associated with tumor immune escape. At the same time, it is also closely related to adhesion, invasion and metastasis of tumor. Athough B7-H3 related receptors have not been identified, the 8H9 antibodies against B7-H3 have been clinically successful. In this paper, the latest progress in the study of glioma immunity against B7-H3 is discussed.

[20]
Lee Y, Martinorozco N, Zheng P, et al. Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function[J]. Cell Res, 2017, 27(8):1034-1045.
[21]
Ling V, Wu PW, Spaulding V, et al. Duplication of primate and rodent B7-H3 immunoglobulin V- and C-like domains: divergent history of functional redundancy and exon loss[J]. Genomics, 2003, 82(3):365-377.
[22]
Prasad DV, Nguyen T, Li Z, et al. Murine B7-H3 is a negative regulator of T cells[J]. J Immunol, 2004, 173(4):2500-2506.
[23]
Ma J, Ma P, Zhao C, et al. B7-H3 as a promising target for cytotoxicity T cell in human cancer therapy[J]. Oncotarget, 2016, 7(20):29480-29491.
[24]
Chen YW, Tekle C, Fodstad O. The immunoregulatory protein human B7H3 is a tumor-associated antigen that regulates tumor cell migration and invasion[J]. Curr Cancer Drug Targets, 2008, 8(5):404-413.
[25]
Tekle C, Nygren MK, Chen YW, et al. B7-H3 contributes to the metastatic capacity of melanoma cells by modulation of known metastasis-associated genes[J]. Int J Cancer, 2012, 130(10):2282-2290.
[26]
Kang FB, Wang L, Jia HC, et al. B7-H3 promotes aggression and invasion of hepatocellular carcinoma by targeting epithelial-to-mesenchymal transition via JAK2/STAT3/Slug signaling pathway[J]. Cancer Cell Int, 2015, 15:45.
[27]
Marimpietri D, Petretto A, Raffaghello L, et al. Proteome profiling of neuroblastoma-derived exosomes reveal the expression of proteins potentially involved in tumor progression[J]. PLoS One, 2013, 8(9):e75054.
[28]
Ricci-Vitiani L, Biffoni M, Todaro M, et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells[J]. Nature, 2010, 468(7325):824-828.
[29]
Gregorio A, Corrias MV, Castriconi R, et al. Small round blue cell tumours: diagnostic and prognostic usefulness of the expression of B7-H3 surface molecule[J]. Histopathology, 2008, 53(1):73-80.
[30]
Castriconi R, Dondero A, Negri F, et al. Both CD133+ and CD133-medulloblastoma cell lines express ligands for triggering NK receptors and are susceptible to NK-mediated cytotoxicity[J]. Eur J Immunol, 2007, 37(11):3190-3196.
[31]
Baral A, Ye HX, Jiang PC, et al. B7-H3 and B7-H1 expression in cerebral spinal fluid and tumor tissue correlates with the malignancy grade of glioma patients[J]. Oncol Lett, 2014, 8(3):1195-1201.
[32]
Zhou Z, Luther N, Ibrahim GM, et al. B7-H3, a potential therapeutic target, is expressed in diffuse intrinsic pontine glioma[J]. J Neurooncol, 2013, 111(3):257-264.
[33]
Egen JG, Kuhns MS, Allison JP. CTLA-4: new insights into its biological function and use in tumor immunotherapy[J]. Nat Immunol, 2002, 3(7):611-618.
[34]
Loo D, Alderson RF, Chen FZ, et al. Development of an Fc-enhanced anti-B7-H3 monoclonal antibody with potent antitumor activity[J]. Clin Cancer Res, 2012, 18(14):3834-3845.
[35]
Ahmed M, Cheng M, Zhao Q, et al. Humanized affinity-matured monoclonal antibody 8H9 has potent antitumor activity and binds to FG loop of tumor antigen B7-H3[J]. J Biol Chem, 2015, 290(50):30018-30029.
[36]
Picarda E, Ohaegbulam KC, Zang X. Molecular pathways: targeting B7-H3 (CD276) for human cancer immunotherapy[J]. Clin Cancer Res, 2016, 22(14):3425-3431.
[37]
Yuan H, Wei X, Zhang G, et al. B7-H3 over expression in prostate cancer promotes tumor cell progression[J]. J Urol, 2011, 186(3):1093-1099.
[1]
Hakomori S. Tumor-associated carbohydrate antigens[J]. Annu Rev Immunol, 1984, 2:103-126.
[2]
Ladisch S, Wu ZL, Feig S, et al. Shedding of GD2 ganglioside by human neuroblastoma[J]. Int J Cancer, 1987, 39(1):73-76.
[3]
Valentino L, Moss T, Olson E, et al. Shed tumor gangliosides and progression of human neuroblastoma[J]. Blood, 1990, 75(7):1564-1567.
[4]
Sivori S, Parolini S, Marcenaro E. Involvement of natural cytotoxicity receptors in human natural killer cell-mediated lysis of neuroblastoma and glioblastoma cell lines[J]. J Neuroimmunol, 2000, 107(2):220-225.
[5]
Ruggeri L, Capanni M, Urbani E. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants[J]. Science, 2002, 295(5562):2097-1200.
[6]
Velardi A, Ruggeri L, Alessandro. NK cells: a lesson from mismatched hematopoietic transplantation[J]. Trends Immunol, 2002, 23(9):438-444.
[7]
Baral A, Ye HX, Jiang PC, et al. B7-H3 and B7-H1 expression in cerebral spinal fluid and tumor tissue correlates with the malignancy grade of glioma patients[J]. Oncol Lett, 2014, 8(3):1195-1201.
[8]
Zhou Z, Luther N, Ibrahim GM. B7-H3, a potential therapeutic target, is expressed in diffuse intrinsic pontine glioma[J]. J Neurooncol, 2013, 111(3):257-264.
[9]
Hashiguchi M, Kobori H, Ritprajak P. Triggering receptor expressed on myeloid cell-like transcript 2 (TLT-2) is a counter-receptor for B7-H3 and enhances T cell responses[J]. Proc Natl Acad Sci USA, 2008, 105(30):10495-10500.
[10]
Steinberger P, Majdic O, Derdak SV, et al. Molecular characterization of human 4Ig-B7-H3, a memberof the B7 family with four Ig-like domains[J]. J Immunol, 2004, 172:2352-2359.
[11]
Sun M, Richards S, Prasad DV, et al. Characterization of mouse and human B7-H3 genes[J]. J Immunol, 2002, 168(12):6294-6297.
[12]
Zhang G, Dong Q, Xu Y, et al. B7-H3: another molecule marker for Mo-DCs?[J]. Cell Mol Immunol, 2005, 2(4):307-311.
[13]
Chapoval AI, Ni J, Lau JS, et al. B7-H3: acostimulatory molecule for T cell activation and IFN-g production[J]. Nat Immunol, 2001, 2(3):269-274.
[14]
Sun J, Fu F, Gu W, et al. Origination of newimmunological functions in the costimulatory molecule B7-H3: the role of exon duplication in evolution of the immune system[J]. PLoS One, 2011, 6(9):e24751.
[15]
Zhang G, Hou J, Shi J, et al. Soluble CD276 (B7-H3) is released from monocytes, dendritic cells and activated T cells and is detectable in normal human serum[J]. Immunology, 2008, 123(4):538-546.
[16]
Mahnke K, Ring S, Johnson TS, et al. Induction of immunosuppressive functions of dendritic cells in vivo by CD4+CD25+ regulatory T cells: role of B7-H3 expression and antigen presentation[J]. Eur J Immunol 2007, 37(8):2117-2608.
[17]
Suh WK, Gajewska BU, Okada H, et al. The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses[J]. Nat Immunol, 2003, 4(9):899-906.
[18]
Wang Z, Yang J, Zhu Y, et al. Differential expression of 2IgB7-H3 and 4IgB7-H3 in cancer cell lines and glioma tissues[J]. Oncol Lett, 2015, 10(4):2204-2208.
[19]
Wang Z, Wang Z, Zhang C, et al. Genetic and clinical characterization of B7-H3(CD276) expression and epigenetic regulation in diffuse brain glioma[J]. Cancer Sci, 2018, 109(9):2697-2705.
[1] 梁孟杰, 朱欢欢, 王行舟, 江航, 艾世超, 孙锋, 宋鹏, 王萌, 刘颂, 夏雪峰, 杜峻峰, 傅双, 陆晓峰, 沈晓菲, 管文贤. 联合免疫治疗的胃癌转化治疗患者预后及术后并发症分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 619-623.
[2] 林逸, 钟文龙, 李锴文, 何旺, 林天歆. 广东省医学会泌尿外科疑难病例多学科会诊(第15期)——转移性膀胱癌的综合治疗[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 648-652.
[3] 吴伟宙, 王琼仁, 詹雄宇, 郑明星, 李亚县. 广东省医学会泌尿外科疑难病例多学科会诊(第16期)——左肾肉瘤样癌[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 525-529.
[4] 李勇, 彭天明, 王倩倩, 陈育纯, 蒲小勇, 刘久敏. 基于失巢凋亡相关基因的膀胱癌预后模型构建及分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 331-339.
[5] 李飞, 郑灶松, 吴芃, 谭万龙. 广东省医学会泌尿外科疑难病例多学科会诊(第16期)——延胡索酸水合酶缺陷型晚期肾细胞癌[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 410-414.
[6] 邓楠, 刘平. 广东省医学会泌尿外科疑难病例多学科会诊(第14期)——左肾盂恶性肿瘤并左肾巨大积液[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 296-299.
[7] 邓永豪, 曹嘉正. 长链非编码RNA与肾癌的关系及其在肾癌中的临床应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 289-293.
[8] 黄兴, 王蕾, 夏丹. 靶向免疫治疗时代下减瘤性肾切除术在转移性肾细胞癌治疗中的价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 208-213.
[9] 陈旭, 牛凯, 孙建国. 放疗联合免疫治疗对驱动基因阴性NSCLC的困惑分析及应对策略[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 341-348.
[10] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[11] 魏妙艳, 徐近. 合并远处转移胰腺癌系统性治疗的梳理和展望[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 644-650.
[12] 王莹莹. 神经导航联合术中神经电生理监测在脑干胶质瘤手术切除中的应用[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 293-298.
[13] 杨智钧, 谷佳, 丁聿贤, 张正奎, 于如同. 脑胶质瘤患者血清炎性因子水平与病理分级及预后的相关性[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 238-242.
[14] 王昌前, 林婷婷, 宁雨露, 王颖杰, 谭文勇. 光免疫治疗在肿瘤领域的临床应用新进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 575-583.
[15] 吴迪, 闫志风, 李明霞, 孟元光. 晚期子宫内膜癌免疫治疗的探索[J/OL]. 中华临床医师杂志(电子版), 2024, 18(03): 231-237.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?