切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2019, Vol. 05 ›› Issue (01) : 56 -59. doi: 10.3877/cma.j.issn.2095-9141.2019.01.012

所属专题: 文献

综述

B7-H3在胶质瘤免疫研究中的新进展
赵嘉银1, 范益民1,()   
  1. 1. 030000 太原,山西医科大学第一附属医院神经外科
  • 收稿日期:2018-09-04 出版日期:2019-02-15
  • 通信作者: 范益民

New progress of B7-H3 in glioma immunity

Jiayin Zhao1, Yimin Fan1,()   

  1. 1. Department of Neurosurgery, the First Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China
  • Received:2018-09-04 Published:2019-02-15
  • Corresponding author: Yimin Fan
  • About author:
    Corresponding author: Fan Yimin, Email:
引用本文:

赵嘉银, 范益民. B7-H3在胶质瘤免疫研究中的新进展[J]. 中华神经创伤外科电子杂志, 2019, 05(01): 56-59.

Jiayin Zhao, Yimin Fan. New progress of B7-H3 in glioma immunity[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2019, 05(01): 56-59.

B7-H3作为B7-CD28检查点通路的新成员,在肿瘤免疫过程中起到了极其重要的作用。大量研究表明,B7-H3在多数肿瘤中呈高表达,并与肿瘤的免疫逃逸相关联,且与肿瘤的黏连、侵袭和转移存在密不可分的关系。尽管B7-H3相关受体尚未明确,但是,针对其相关的8H9抗体已在临床上得到了初步性的成功。本文现围绕抗B7-H3在胶质瘤免疫研究中的最新进展综述如下。

As a new member of B7-CD28 checkpoint pathway, B7-H3 plays an important role in tumor immunity. A large number of studies have shown that B7-H3 is highly expressed in most tumors and is associated with tumor immune escape. At the same time, it is also closely related to adhesion, invasion and metastasis of tumor. Athough B7-H3 related receptors have not been identified, the 8H9 antibodies against B7-H3 have been clinically successful. In this paper, the latest progress in the study of glioma immunity against B7-H3 is discussed.

[20]
Lee Y, Martinorozco N, Zheng P, et al. Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function[J]. Cell Res, 2017, 27(8):1034-1045.
[21]
Ling V, Wu PW, Spaulding V, et al. Duplication of primate and rodent B7-H3 immunoglobulin V- and C-like domains: divergent history of functional redundancy and exon loss[J]. Genomics, 2003, 82(3):365-377.
[22]
Prasad DV, Nguyen T, Li Z, et al. Murine B7-H3 is a negative regulator of T cells[J]. J Immunol, 2004, 173(4):2500-2506.
[23]
Ma J, Ma P, Zhao C, et al. B7-H3 as a promising target for cytotoxicity T cell in human cancer therapy[J]. Oncotarget, 2016, 7(20):29480-29491.
[24]
Chen YW, Tekle C, Fodstad O. The immunoregulatory protein human B7H3 is a tumor-associated antigen that regulates tumor cell migration and invasion[J]. Curr Cancer Drug Targets, 2008, 8(5):404-413.
[25]
Tekle C, Nygren MK, Chen YW, et al. B7-H3 contributes to the metastatic capacity of melanoma cells by modulation of known metastasis-associated genes[J]. Int J Cancer, 2012, 130(10):2282-2290.
[26]
Kang FB, Wang L, Jia HC, et al. B7-H3 promotes aggression and invasion of hepatocellular carcinoma by targeting epithelial-to-mesenchymal transition via JAK2/STAT3/Slug signaling pathway[J]. Cancer Cell Int, 2015, 15:45.
[27]
Marimpietri D, Petretto A, Raffaghello L, et al. Proteome profiling of neuroblastoma-derived exosomes reveal the expression of proteins potentially involved in tumor progression[J]. PLoS One, 2013, 8(9):e75054.
[28]
Ricci-Vitiani L, Biffoni M, Todaro M, et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells[J]. Nature, 2010, 468(7325):824-828.
[29]
Gregorio A, Corrias MV, Castriconi R, et al. Small round blue cell tumours: diagnostic and prognostic usefulness of the expression of B7-H3 surface molecule[J]. Histopathology, 2008, 53(1):73-80.
[30]
Castriconi R, Dondero A, Negri F, et al. Both CD133+ and CD133-medulloblastoma cell lines express ligands for triggering NK receptors and are susceptible to NK-mediated cytotoxicity[J]. Eur J Immunol, 2007, 37(11):3190-3196.
[31]
Baral A, Ye HX, Jiang PC, et al. B7-H3 and B7-H1 expression in cerebral spinal fluid and tumor tissue correlates with the malignancy grade of glioma patients[J]. Oncol Lett, 2014, 8(3):1195-1201.
[32]
Zhou Z, Luther N, Ibrahim GM, et al. B7-H3, a potential therapeutic target, is expressed in diffuse intrinsic pontine glioma[J]. J Neurooncol, 2013, 111(3):257-264.
[33]
Egen JG, Kuhns MS, Allison JP. CTLA-4: new insights into its biological function and use in tumor immunotherapy[J]. Nat Immunol, 2002, 3(7):611-618.
[34]
Loo D, Alderson RF, Chen FZ, et al. Development of an Fc-enhanced anti-B7-H3 monoclonal antibody with potent antitumor activity[J]. Clin Cancer Res, 2012, 18(14):3834-3845.
[35]
Ahmed M, Cheng M, Zhao Q, et al. Humanized affinity-matured monoclonal antibody 8H9 has potent antitumor activity and binds to FG loop of tumor antigen B7-H3[J]. J Biol Chem, 2015, 290(50):30018-30029.
[36]
Picarda E, Ohaegbulam KC, Zang X. Molecular pathways: targeting B7-H3 (CD276) for human cancer immunotherapy[J]. Clin Cancer Res, 2016, 22(14):3425-3431.
[37]
Yuan H, Wei X, Zhang G, et al. B7-H3 over expression in prostate cancer promotes tumor cell progression[J]. J Urol, 2011, 186(3):1093-1099.
[1]
Hakomori S. Tumor-associated carbohydrate antigens[J]. Annu Rev Immunol, 1984, 2:103-126.
[2]
Ladisch S, Wu ZL, Feig S, et al. Shedding of GD2 ganglioside by human neuroblastoma[J]. Int J Cancer, 1987, 39(1):73-76.
[3]
Valentino L, Moss T, Olson E, et al. Shed tumor gangliosides and progression of human neuroblastoma[J]. Blood, 1990, 75(7):1564-1567.
[4]
Sivori S, Parolini S, Marcenaro E. Involvement of natural cytotoxicity receptors in human natural killer cell-mediated lysis of neuroblastoma and glioblastoma cell lines[J]. J Neuroimmunol, 2000, 107(2):220-225.
[5]
Ruggeri L, Capanni M, Urbani E. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants[J]. Science, 2002, 295(5562):2097-1200.
[6]
Velardi A, Ruggeri L, Alessandro. NK cells: a lesson from mismatched hematopoietic transplantation[J]. Trends Immunol, 2002, 23(9):438-444.
[7]
Baral A, Ye HX, Jiang PC, et al. B7-H3 and B7-H1 expression in cerebral spinal fluid and tumor tissue correlates with the malignancy grade of glioma patients[J]. Oncol Lett, 2014, 8(3):1195-1201.
[8]
Zhou Z, Luther N, Ibrahim GM. B7-H3, a potential therapeutic target, is expressed in diffuse intrinsic pontine glioma[J]. J Neurooncol, 2013, 111(3):257-264.
[9]
Hashiguchi M, Kobori H, Ritprajak P. Triggering receptor expressed on myeloid cell-like transcript 2 (TLT-2) is a counter-receptor for B7-H3 and enhances T cell responses[J]. Proc Natl Acad Sci USA, 2008, 105(30):10495-10500.
[10]
Steinberger P, Majdic O, Derdak SV, et al. Molecular characterization of human 4Ig-B7-H3, a memberof the B7 family with four Ig-like domains[J]. J Immunol, 2004, 172:2352-2359.
[11]
Sun M, Richards S, Prasad DV, et al. Characterization of mouse and human B7-H3 genes[J]. J Immunol, 2002, 168(12):6294-6297.
[12]
Zhang G, Dong Q, Xu Y, et al. B7-H3: another molecule marker for Mo-DCs?[J]. Cell Mol Immunol, 2005, 2(4):307-311.
[13]
Chapoval AI, Ni J, Lau JS, et al. B7-H3: acostimulatory molecule for T cell activation and IFN-g production[J]. Nat Immunol, 2001, 2(3):269-274.
[14]
Sun J, Fu F, Gu W, et al. Origination of newimmunological functions in the costimulatory molecule B7-H3: the role of exon duplication in evolution of the immune system[J]. PLoS One, 2011, 6(9):e24751.
[15]
Zhang G, Hou J, Shi J, et al. Soluble CD276 (B7-H3) is released from monocytes, dendritic cells and activated T cells and is detectable in normal human serum[J]. Immunology, 2008, 123(4):538-546.
[16]
Mahnke K, Ring S, Johnson TS, et al. Induction of immunosuppressive functions of dendritic cells in vivo by CD4+CD25+ regulatory T cells: role of B7-H3 expression and antigen presentation[J]. Eur J Immunol 2007, 37(8):2117-2608.
[17]
Suh WK, Gajewska BU, Okada H, et al. The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses[J]. Nat Immunol, 2003, 4(9):899-906.
[18]
Wang Z, Yang J, Zhu Y, et al. Differential expression of 2IgB7-H3 and 4IgB7-H3 in cancer cell lines and glioma tissues[J]. Oncol Lett, 2015, 10(4):2204-2208.
[19]
Wang Z, Wang Z, Zhang C, et al. Genetic and clinical characterization of B7-H3(CD276) expression and epigenetic regulation in diffuse brain glioma[J]. Cancer Sci, 2018, 109(9):2697-2705.
[1] 王晗宇, 张司可, 张羽, 万欣, 贺秋霞, 李明明, 杨秀华. 超声造影在脑胶质瘤切除术术中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 755-760.
[2] 李晨曦, 谭小容, 魏巍, 李慕秋, 龚忠诚. 三级淋巴结构在口腔癌中的特征及意义[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 315-321.
[3] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[4] 闫甲, 刘双池, 王政宇. 胆囊癌肿瘤标志物的研究和应用进展[J]. 中华普通外科学文献(电子版), 2023, 17(05): 391-394.
[5] 薛永婷, 高峰, 王雅楠, 屈莲平. 溶瘤病毒治疗在结直肠癌中的应用[J]. 中华普通外科学文献(电子版), 2023, 17(05): 380-384.
[6] 陈坤, 何傅梅, 方婷, 陈文瑞. 血清sCD73与EGFR/ALK野生型非小细胞肺癌免疫治疗效果的相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 504-507.
[7] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[8] 阎凯, 付雍, 章正涛, 卢文峰, 王毅州, 巫国谊, 张海斌. 中晚期肝癌疗效预测模型暨肝癌类器官模型研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 348-351.
[9] 陈润芝, 杨东梅, 徐慧婷. 信迪利单抗联合索凡替尼后线治疗MSS型BRAF突变的转移性结肠癌:个案报道并文献复习[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 431-435.
[10] 程亚飞, 任长远, 李海马, 孙恺, 马亚群. FSTL1基因在胶质瘤发展中作用的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 206-215.
[11] 胡宝茹, 尚乃舰, 高迪. 中晚期肝细胞癌的DCE-MRI及DWI表现与免疫治疗预后的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 399-403.
[12] 杨镠, 秦岚群, 耿茜, 李栋庆, 戚春建, 蒋华. 可溶性免疫检查点对胃癌患者免疫治疗疗效和预后的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 305-311.
[13] 冯海涛, 徐涛, 刘文阳, 孙晨, 曹尚超. 三维动脉自旋标记联合动态对比增强MRI对脑胶质瘤术后复发及放射性脑坏死诊断的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 262-265.
[14] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
[15] 张琪悦, 王晓东. IL-8与肿瘤免疫的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 605-613.
阅读次数
全文


摘要